A. | 直角三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 正三角形 |
分析 利用诱导公式化简已知,利用等差数列的性质可得2bcosB=-acosC-ccosA,根据正弦定理及三角函数恒等变换的应用可解得cosB=-$\frac{1}{2}$,即可解得B=120°,从而得解.
解答 解:∵asin($\frac{3π}{2}$-C)=-acosC,bcos(2π-B)=bcosB,ccos(π+A)=-ccosA,
∴依题意得2bcosB=-acosC-ccosA,
根据正弦定理可得2sinBcosB=-(sinAcosC+cosAsinC),
即2sinBcosB=-sin(A+C)=-sinB,解得cosB=-$\frac{1}{2}$,
所以B=120°,故ABC是钝角三角形.
故选:C.
点评 本题主要考查了诱导公式,等差数列的性质,正弦定理及三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(-3,1,1) | B. | $\overrightarrow{{n}_{1}}$=(1,1,2),$\overrightarrow{{n}_{2}}$=(-2,1,1) | ||
C. | $\overrightarrow{{n}_{1}}$=(1,1,1),$\overrightarrow{{n}_{2}}$=(-1,2,1) | D. | $\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(0,-2,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x>1,x+$\frac{1}{x}$≤2 | B. | ?x>1,x+$\frac{1}{x}$≤2 | C. | ?x≤1,x+$\frac{1}{x}$≤2 | D. | ?x≤1,x+$\frac{1}{x}$≤2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com