精英家教网 > 高中数学 > 题目详情
19.△ABC的三个内角A,B,C对应的边分别为a,b,c,且asin($\frac{3π}{2}$-C),bcos(2π-B),ccos(π+A)成等差数列,则△ABC是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.正三角形

分析 利用诱导公式化简已知,利用等差数列的性质可得2bcosB=-acosC-ccosA,根据正弦定理及三角函数恒等变换的应用可解得cosB=-$\frac{1}{2}$,即可解得B=120°,从而得解.

解答 解:∵asin($\frac{3π}{2}$-C)=-acosC,bcos(2π-B)=bcosB,ccos(π+A)=-ccosA,
∴依题意得2bcosB=-acosC-ccosA,
根据正弦定理可得2sinBcosB=-(sinAcosC+cosAsinC),
即2sinBcosB=-sin(A+C)=-sinB,解得cosB=-$\frac{1}{2}$,
所以B=120°,故ABC是钝角三角形.
故选:C.

点评 本题主要考查了诱导公式,等差数列的性质,正弦定理及三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=(  )
A.4B.$\sqrt{3}$C.$2\sqrt{3}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若平面α,β垂直,则下面可以作为这两个平面的法向量的是(  )
A.$\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(-3,1,1)B.$\overrightarrow{{n}_{1}}$=(1,1,2),$\overrightarrow{{n}_{2}}$=(-2,1,1)
C.$\overrightarrow{{n}_{1}}$=(1,1,1),$\overrightarrow{{n}_{2}}$=(-1,2,1)D.$\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(0,-2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=1-$\frac{2}{{4}^{x}+1}$的值域为(  )
A.(-∞,-1)B.(-∞,-1]C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若p:a<1,q:关于x的二次方程x2+(a+1)x+a-2=0的一个根大于零,另一根小于零,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用max{x,y}表示x,y两个数中的最大数,若△ABC的三个内角满足:A≤B≤C,则$max\left\{{\frac{sinA}{sinB},\frac{sinB}{sinC}}\right\}$的取值范围为($\frac{\sqrt{5}-1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.语文、数学、英语共三本课本放成一摞,语文课本与数学课本恰好相邻放置的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,已知P为△ABC内一点(不包括边界),证明:S△PAB•$\overrightarrow{PC}$+S△PBC•$\overrightarrow{PA}$+S△PCA•$\overrightarrow{PB}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设命题p:?x>1,x+$\frac{1}{x}$>2,则¬p为(  )
A.?x>1,x+$\frac{1}{x}$≤2B.?x>1,x+$\frac{1}{x}$≤2C.?x≤1,x+$\frac{1}{x}$≤2D.?x≤1,x+$\frac{1}{x}$≤2

查看答案和解析>>

同步练习册答案