精英家教网 > 高中数学 > 题目详情
设向量
a
b
c
满足
a
+
b
+
c
=
0
a
b
|a
|=1,
|b
|=2
,则
|c
|2
=(  )
A、1B、2C、4D、5
分析:要求向量的模,求模时一般先求模的平方,而本题直接求模的平方,故题目省掉一步开方,也使同学们避免了一个错误,根据三个向量和为零,得到要求向量的表示式,再就是向量垂直时数量积为零.
解答:解:∵
a
+
b
+
c
=
0

-
a
-
b
=
c

a
b

a
b
=0

|c
|2
=(-
a
-
b
)2

=|
a
|2+2
a
b
+|
b
|2

=5
点评:两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“•”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
b,
c
满足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
b,若|
a
|=1
,则|
a
|2+|
b
|2+|
c
|2
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
c
满足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,|
a
|=1,则|
c
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
c
满足|
a
|=|
b
|=1,
a
b
=
1
2
,( 
a
-
c
)•( 
b
-
c
)=0,则|
c
|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011年高考全国卷理科)设向量
a
b
c
满足|
a
|=|
b
|=1,
a
b
=-
1
2
a
-
c
b
-
c
=600,则|
c
|
的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
c
满足|
a
|=|
b
|=1,
a
b
=-
1
2
,<
a
-
c
b
-
c
>=60°
,则|
c
|的最大值等于
2
2

查看答案和解析>>

同步练习册答案