分析 利用向量共线定理即可得出.
解答 解:∵$\overrightarrow{m}$∥$\overrightarrow{n}$,∴存在实数k,使得$\overrightarrow{m}$=k$\overrightarrow{n}$,
则$\left\{\begin{array}{l}{2=4k}\\{2s-3=k(3t-2)}\\{t+2=k(3t-2)}\end{array}\right.$,解得k=$\frac{1}{2}$,s=$\frac{7}{2}$,t=6.
∴s+t=$\frac{19}{2}$.
故答案为:$\frac{19}{2}$.
点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com