已知动圆经过点,且和直线
相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.
科目:高中数学 来源: 题型:解答题
已知两点及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆
有且仅有一个公共点,点
是直线
上的两点,且
,
. 求四边形
面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,过点P(4,0)且不垂直于x轴直线
与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.
(1)求抛物线的方程;
(2)当的角平分线垂直
轴时,求直线
的斜率;
(3)若直线在
轴上的截距为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆
相交于
、
两点. ①若线段
中点的横坐标为
,求斜率
的值;②若点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2分别是椭圆C:+
=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°
(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求a,b的值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图示:已知抛物线的焦点为
,过点
作直线
交抛物线
于
、
两点,经过
、
两点分别作抛物线
的切线
、
,切线
与
相交于点
.
(1)当点在第二象限,且到准线距离为
时,求
;
(2)证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知圆
和圆
.
(1)若直线过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)设为平面上的点,满足:存在过点
的无穷多对互相垂直的直线
和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长与直线
被圆
截得的弦长相等,试求所有满足条件的点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是
时,
.
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com