精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|3≤x<6},B={y|y=2x , 2≤x<3},U=R.
(1)求A∪B;
(2)求(UA)∩B.

【答案】
(1)解:B={y|y=2x,2≤x<3}=[4,8),A={x|3≤x<6}=[3,6),

则A∪B=[3,8)


(2)解:UA=(﹣∞,3)∪[6,+∞),

∴(UA)∩B=[6,8)


【解析】(1)找出既属于A又属于B的部分,即可求出两集合的并集;(2)找出全集R中不属于A的部分,求出A的补集,找出A补集与B的公共部分,即可确定出所求的集合.
【考点精析】认真审题,首先需要了解集合的并集运算(并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立),还要掌握交、并、补集的混合运算(求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数,当时, ,则关于的函数的所有零点之和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
( I)判断f(x)的奇偶性;
( II)求证:f(x)+f( )为定值;
(III)求 + + +f(1)+f(2015)+f(2016)+f(2017)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x),当x>0时f(x)=x+ ,则f(﹣1)=(
A.1
B.2
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列不等式:
1+ ,1+
1+ + +

照此规律,第五个不等式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{fn(x)}满足f1(x)= (x>0),fn+1(x)=f1[fn(x)],
(1)求f2(x),f3(x),并猜想fn(x)的表达式;
(2)用数学归纳法证明对fn(x)的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

爱好

40

20

60

不爱好

20

30

50

60

50

110

根据上述数据能得出的结论是(
(参考公式与数据:X2= .当X2>3.841时,有95%的把握说事件A与B有关;当X2>6.635时,有99%的把握说事件A与B有关; 当X2<3.841时认为事件A与B无关.)
A.有99%的把握认为“爱好该项运动与性别有关”
B.有99%的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 + +…+ =an﹣1(n∈N*),求数列{nbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)试讨论函数的极值情况;

(2)证明:当时,总有.

查看答案和解析>>

同步练习册答案