【题目】已知函数f(x)=x(lnx﹣2ax)有两个极值点,则实数a的取值范围是( )
A.(﹣∞, )
B.(0, )
C.(0, )
D.( ,+∞)
【答案】C
【解析】解:f(x)=xlnx﹣2ax2(x>0),f′(x)=lnx+1﹣4ax. 令g(x)=lnx+1﹣4ax,
∵函数f(x)=x(lnx﹣ax)有两个极值点,
则g(x)=0在区间(0,+∞)上有两个实数根.
g′(x)= ﹣4a= ,
当a≤0时,g′(x)>0,则函数g(x)在区间(0,+∞)单调递增,
因此g(x)=0在区间(0,+∞)上不可能有两个实数根,应舍去.
当a>0时,令g′(x)=0,解得x= .
令g′(x)>0,解得0<x< ,此时函数g(x)单调递增;
令g′(x)<0,解得x> ,此时函数g(x)单调递减.
∴当x= 时,函数g(x)取得极大值.
当x趋近于0与x趋近于+∞时,g(x)→﹣∞,
要使g(x)=0在区间(0,+∞)上有两个实数根,
只需g( )=ln >0,解得0<a< .
∴实数a的取值范围是(0, ).
故选:C.
【考点精析】关于本题考查的函数的极值与导数,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】《城市规划管理意见》里面提出“新建住宅要推广街区制,原则上不再建设封闭住宅小区,已建成的封闭小区和单位大院要逐步打开”,这个消息在网上一石激起千层浪,各种说法不一而足.某网站为了解居民对“开放小区”认同与否,从岁的人群中随机抽取了人进行问卷调查,并且做出了各个年龄段的频率分布直方图(部分)如图所示,同时对人对这“开放小区”认同情况进行统计得到下表:
(Ⅰ)完成所给的频率分布直方图,并求的值;
(Ⅱ)如果从两个年龄段中的“认同”人群中,按分层抽样的方法抽取6人参与座谈会,然后从这6人中随机抽取2人作进一步调查,求这2人的年龄都在内的概率 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左右焦点分别为, ,左顶点为,上顶点为, 的面积为.
(1)求椭圆的方程;
(2)设直线: 与椭圆相交于不同的两点, , 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C1: 的离心率为 ,抛物线C2:x2=4y的焦点F是C1的一个顶点.
(I)求椭圆C1的方程;
(II)过点F且斜率为k的直线l交椭圆C1于另一点D,交抛物线C2于A,B两点,线段DF的中点为M,直线OM交椭圆C1于P,Q两点,记直线OM的斜率为k'.
(i)求证:kk'=﹣ ;
(ii)△PDF的面积为S1 , △QAB的面积为是S2 , 若S1S2=λk2 , 求实数λ的最大值及取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=sinxcosx﹣cos2(x+ ). (Ⅰ)求f(x)的单调区间;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f( )=0,a=1,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足 , .
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较 和ex﹣1+a哪个更靠近lnx,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下表为“五点法”绘制函数图象时的五个关键点的坐标(其中).
0 | 2 | 0 | 0 |
(Ⅰ) 请写出函数的最小正周期和解析式;
(Ⅱ) 求函数的单调递增区间;
(Ⅲ) 求函数在区间上的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F. (Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com