精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,椭圆:的离心率为y轴于椭圆相交于AB两点,CD是椭圆上异于AB的任意两点,且直线ACBD相交于点M,直线ADBC相交于点N

求椭圆的方程;

求直线MN的斜率.

【答案】(1);(2).

【解析】

运用离心率公式和,解方程可得

,同理可设直线AC方程为,直线方程为,则直线BC方程为,直线BD方程为

可得直线ACBD相交点直线ADBC相交点可得直线MN的斜率.

解:椭圆:的离心率为

y轴于椭圆相交于AB两点,

椭圆的方程为:

同理

可设直线AC方程为,直线AD方程为

则直线BC方程为,直线BD方程为

可得直线ACBD相交点

同理可得直线ADBC相交点

直线MN的斜率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 已知a2=7,a3为整数,且Sn的最大值为S5
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中:①“等边三角形的三个内角均为60°”的逆命题;

②“若,则方程有实根”的逆否命题;

③“全等三角形的面积相等”的否命题;

④“若,则”的否命题.

其中真命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足 =
(Ⅰ)求角A的大小;
(Ⅱ)若a=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数处的切线方程

(2)若函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆直线.

(1)求与圆相切且与直线垂直的直线方程

(2)在直线为坐标原点),存在定点(不同于点),满足:对于圆上任一点都有为一常数试求所有满足条件的点的坐标.

【答案】(1)(2)答案见解析.

【解析】试题分析:

(1)设所求直线方程为利用圆心到直线的距离等于半径可得关于b的方程,解方程可得则所求直线方程为

(2)方法1:假设存在这样的点由题意可得,然后证明为常数为即可.

方法2:假设存在这样的点,使得为常数,则据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.

试题解析:

(1)设所求直线方程为,即

∵直线与圆相切,∴,得

∴所求直线方程为

(2)方法1:假设存在这样的点

为圆轴左交点时,

为圆轴右交点时,

依题意,,解得,(舍去),或.

下面证明点对于圆上任一点,都有为一常数.

,则

从而为常数.

方法2:假设存在这样的点,使得为常数,则

,将代入得,

,即

恒成立,

,解得(舍去),

所以存在点对于圆上任一点,都有为常数.

点睛:求定值问题常见的方法有两种:

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

型】解答
束】
22

【题目】已知函数的导函数为其中为常数.

(1)当的最大值并推断方程是否有实数解

(2)若在区间上的最大值为-3,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点为直线上一点,过点的垂线与以为直径的圆相交于两点.

(1)若,求圆的方程;

(2)求证:点始终在某定圆上.

(3)是否存在一定点(异于点),使得为常数?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x﹣a,g(x)=x+2.
(1)当a=1时,求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求证: 中至少有一个不小于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】14分)已知ab为常数,且a≠0,函数fx=﹣ax+b+axlnxfe=2e=2.71828…是自然对数的底数).

I)求实数b的值;

II)求函数fx)的单调区间;

III)当a=1时,是否同时存在实数mMmM),使得对每一个t∈[mM],直线y=t与曲线y=fx)(x∈[e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

同步练习册答案