(本题满分16分)
已知函数,且对任意,有.
(1)求;
(2)已知在区间(0,1)上为单调函数,求实数的取值范围.
(3)讨论函数的零点个数?(提示:)
解:(1)由
得………………2分
(2)
所以………………4分
依题意,
或在(0,1)上恒成立………………6分
即
或在(0,1)上恒成立
由在(0,1)上恒成立,
可知
由在(0,1)上恒成立,
可知,所以或………………9分
(3),
令
所以………………10分
令,则,列表如下:
(-∞,-1) |
-1 |
(-1,0) |
0 |
(0,1) |
1 |
(1,+∞) |
|
+ |
0 |
— |
0 |
+ |
0 |
— |
|
h(x) |
单调递增 |
极大值 |
单调递减 |
极小值1 |
单调递增 |
极大值 |
单调递减 |
所以当时,函数无零点;
当1或时,函数有两个零点;
当时,函数有三个零点。
当时,函数有四个零点。………………16分
【解析】略
科目:高中数学 来源: 题型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知函数(,、是常数,且),对定义域内任意(、且),恒有成立.
(1)求函数的解析式,并写出函数的定义域;
(2)求的取值范围,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)已知数列的前项和为,且.数列中,,
.(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②.
查看答案和解析>>
科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)
已知函数
(1)判断并证明在上的单调性;
(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;
(3)若在上恒成立 , 求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com