精英家教网 > 高中数学 > 题目详情
直线
x
4
+
y
3
=1椭圆
x2
16
+
y2
9
=1相交于A,B两点,该椭圆上点P,使得△PAB面积等于3,这样的点P共有
 
个.
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:设出P1的坐标,表示出四边形P1AOB面积S利用两角和公式整理后.利用三角函数的性质求得面积的最大值,进而求得△P1AB的最大值,利用6√2-6<3判断出点P不可能在直线AB的上方,进而推断出在直线AB的下方有两个点P,
解答: 解:设P1(4cosα,3sinα)(0<α<
π
2
)),

即点P1在第一象限的椭圆上,考虑四边形P1AOB面积S,
S=S△OAP1+S△OBP1=
1
2
×4(3sinα)+
1
2
×3(4cosα)=6(sinα+cosα)=6
2
sin(α+
π
4
),∴Smax=6
2

∵S△OAB=
1
2
×4×3=6为定值,
∴S△P1AB的最大值为6
2
-6.
∵6
2
-6<3,
∴点P不可能在直线AB的上方,显然在直线AB的下方有两个点P,
故选B.
点评:本题主要考查了直线与圆锥曲线的关系.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四面体A-BCD中,AD⊥面BCD,BC⊥CD,AD=2,BD=2
2
,M是AD的中点,P是△BMD的外心,点Q在线段AC上,且
AC
=4
QC

(Ⅰ)证明:PQ∥平面BCD;
(Ⅱ)若二面角C-BM-D的大小为60°,求四面体A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程4x-a•2x+4=0有实数解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+
x-1
x
,x∈(0,1],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若log2x=log4(x+2),则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E、F分别是PB、CD的中点,且PB=PC=PD=4.
(1)求证:PA⊥平面ABCD;
(2)求证:EF∥平面PAD;
(3)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形BCDE为矩形,平面ABC⊥平面BCDE,AC⊥BC,AC=CD=
1
2
BC=2,点F是线段AD的中点.
(1)求证:AB∥平面CEF;
(2)求几何体ABCDE被平面CEF分成的上下两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a
-y2=1(a>0)的实轴长2,则该双曲线的离心率为(  )
A、
2
2
B、
2
C、
5
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=x+y,其中实数x,y满足
x+2y≥o
x-y≤o
0≤y≤k
若z的最大值为12,则z的最小值为(  )
A、-3B、3C、-6D、6

查看答案和解析>>

同步练习册答案