【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃),对某种鸡的时段产蛋量(单位: )和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中.
(1)根据散点图判断, 与哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)
(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;
(3)已知时段投入成本与的关系为,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?
附:①对于一组具有有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为
②
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
科目:高中数学 来源: 题型:
【题目】已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求满足的的取值;
(2)若函数是定义在上的奇函数
①存在,不等式有解,求的取值范围;
②若函数满足,若对任意,不等式恒成立,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数是定义在上的偶函数,且对任意的恒成立,且当时,.
(1)求证:是以2为周期的函数(不需要证明2是的最小正周期);
(2)对于整数,当时,求函数的解析式;
(3)对于整数,记在有两个不等的实数根},求集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.
(1)求频率分布直方图中的值并估计这50户用户的平均用电量;
(2)若将用电量在区间内的用户记为类用户,标记为低用电家庭,用电量在区间内的用户记为类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:
①从类用户中任意抽取3户,求恰好有2户打分超过85分的概率;
②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?
满意 | 不满意 | 合计 | |
类用户 | |||
类用户 | |||
合计 |
附表及公式:
<>0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四名同学各掷骰子5次,分别记录每次骰子出现的点数,根据四名同学的统计结果,可以判断出一定没有出现点数6的是( )
A.平均数为3.中位数为2B.中位数为3.众数为2
C.平均数为2.方差为2.4D.中位数为3.方差为2.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一名学生通过计步仪器,记录了自己100天每天走的步数,数据如下:
5678 13039 8666 9521 8722 10575 2107 4165
17073 11205 5467 11736 9986 8592 6542 12386
13115 5705 8358 13234 20142 9769 10426 12802
16722 8587 9266 8635 2455 4524 8260 13165
9812 9533 2377 5132 8212 7968 9859 3961
5484 11344 8722 12944 8597 12594 15101 4751
11130 11286 8897 7192 7313 8790 7699 10892
9583 9207 16358 10182 3607 1789 9417 4566
12347 3228 7606 8689 8755 15609 8767 9226
5622 11094 8865 11246 17417 7995 7317 6878
4270 11051 5705 5442 10078 9107 8354 6483
16808 1509 1301 10843 13864 12691 8419 14267
9809 9858 8922 12682
(1)画出这组数据的频率分布直方图,并分析数据的分布特点;
(2)计算这组数据的平均数、中位数和标准差,并根据这些数值描述这名学生的运动情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(l,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=f(x)的切线方程是( )
A. 6x﹣y﹣4=0 B. x﹣4y+7=0
C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com