精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,已知在四棱锥中,底面是矩形,平面的中点, 是线段上的点.

(I)当的中点时,求证:平面

(II)要使二面角的大小为,试确定点的位置.

 

【答案】

(I)只需证;(II)

【解析】

试题分析:【法一】(I)证明:如图,取的中点,连接

由已知得

的中点,则

是平行四边形,                    ………………

平面平面

平面………………………

(II)如图,作的延长线于.

连接,由三垂线定理得

是二面角的平面角.即…………………

,设

可得

故,要使要使二面角的大小为,只需………………

【法二】(I)由已知,两两垂直,分别以它们所在直线为轴建立空间直角坐标系

,则………………

设平面的法向量为

………………………………………

,得

平面,故平面…………………

(II)由已知可得平面的一个法向量为

,设平面的法向量为

,令……………

故,要使要使二面角的大小为,只需……………

考点:线面垂直项性质定理;线面平行的判定定理;二面角。

点评:综合法求二面角,往往需要作出平面角,这是几何中一大难点,而用向量法求解二面角无需作出二面角的平面角,只需求出平面的法向量,经过简单运算即可,从而体现了空间向量的巨大作用.二面角的向量求法: ①若AB、CD分别是二面的两个半平面内与棱垂直的异面直线,则二面角的大小就是向量的夹角或补角; ②设分别是二面角的两个面α,β的法向量,则向量的夹角(或其补角)的大小就是二面角的平面角的大小。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案