精英家教网 > 高中数学 > 题目详情
4.已知f(x)=cos2x-$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$,
(1)写出f(x)图象的对称中心的坐标和单调递增区间;
(2)△ABC三个内角A、B、C所对的边为a、b、c,若f(A)+1=0,b+c=2.求a的最小值.

分析 (1)化简得f(x)=cos(2x+$\frac{π}{3}$),令2x+$\frac{π}{3}$=$\frac{π}{2}$+kπ,解出对称中心,令-π+2kπ≤2x+$\frac{π}{3}$≤2kπ,解出单调增区间;
(2)由f(A)+1=0解出A,由b+c=2得b2+c2=(b+c)2-2bc=4-2bc,代入余弦定理得a2=4-3bc,即bc取得最大值时,a2取得最小值.

解答 解:(1)f(x)=cos2x-$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x=cos(2x+$\frac{π}{3}$),
令2x+$\frac{π}{3}$=$\frac{π}{2}$+kπ,解得x=$\frac{π}{12}$+$\frac{kπ}{2}$,
∴f(x)的对称中心为:($\frac{π}{12}$+$\frac{kπ}{2}$,0),
令-π+2kπ≤2x+$\frac{π}{3}$≤2kπ,解得-$\frac{2π}{3}$+kπ≤x≤-$\frac{π}{6}$+kπ,
∴f(x)的单调递增区间为:[-$\frac{2π}{3}$+kπ,-$\frac{π}{6}$+kπ],k∈Z.
(2)∵f(A)+1=0,即cos(2A+$\frac{π}{3}$)+1=0,∴cos(2A+$\frac{π}{3}$)=-1.
∵0<A<π,∴$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{7π}{3}$,
∴2A+$\frac{π}{3}$=π,∴A=$\frac{π}{3}$.
∵b+c=2,∴b2+c2=(b+c)2-2bc=4-2bc
∴a2=b2+c2-2bc•cosA=4-3bc≥4-3($\frac{b+c}{2}$)2=1.
当且仅当b=c=1时,a取得最小值1.

点评 本题考查了三角函数的恒等变换和性质,余弦定理得应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知双曲线C的焦点在x轴上且渐近线方程为y=±$\sqrt{2}$x,直线L:y=$\frac{\sqrt{3}}{3}$(x-3)与双曲线C交于A,B两点,|AB|=$\frac{16\sqrt{3}}{5}$,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若锐角α,β满足(1+$\sqrt{3}$tanα)(1+$\sqrt{3}$tanβ)=4,则α+β=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(cosx-$\sqrt{3}$sinx,2cos(x-$\frac{π}{6}$)),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的最小正周期;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合S={x|-1<x<1},在S中定义一种运算“*”,当a,b∈S时,a*b=$\frac{a+b}{1+ab}$.
(1)求证:a*b=S;
(2)求证:(a*b)*c=a*(b*c)(a,b,c∈S)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\sqrt{3}$(sin2x-cos2x)+2sinxcosx的最小正周期为π,单调递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{2}$(sinx+cosx)•cosx-$\frac{\sqrt{2}}{2}$;
(1)求函数f(x)的单调递增区间;
(2)当x$∈[0,\frac{7π}{24}]$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数$f(x)=sin(\frac{π}{4}x-\frac{π}{6})-cos\frac{π}{4}$x.
(1)求f(x)的单调增区间;
(2)若x∈(0,4),求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在同一坐标系中,当a>1时,函数 y=($\frac{1}{a}$)x 与 y=logax的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案