精英家教网 > 高中数学 > 题目详情
log93+(
8
27
 -
1
3
=
 
考点:有理数指数幂的化简求值,对数的运算性质
专题:函数的性质及应用
分析:利用指数与对数的运算法则即可得出.
解答: 解:原式=
1
2
+(
3
2
)-3×(-
1
3
)

=
1
2
+
3
2

=2.
故答案为:2.
点评:本题考查了指数与对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx-
π
6
)(ω>0)和g(x)=cos(2x+φ)(0<φ<π)的图象的对称轴相同.
(1)求满足题意的ω,φ的值;
(2)求F(x)=f(x)-g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log3x,x>0
log
1
3
(-x),x<0
,若f(m)>f(-m),则实数m的取值范围是(  )
A、(-1,0)∪(0,1)
B、(-∞,-1)∪(1,+∞)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若tan(2x-
π
6
)≤1,则x的取值范围为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z为复数,z+2i和
z
2-i
均为实数,其中i是虚数单位.
(Ⅰ)求复数z和|z|;
(Ⅱ)若z1=
.
z
+
1
m-1
-
7
m+2
i的对应点在第四象限,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:3<2,命题q:3>2,则下列判断正确的是(  )
A、“¬p”为真命题
B、“¬q”为真命题
C、“p∨q”为假命题
D、“p∧q”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点P(4,1),且与x,y的正半轴交于点A,B,其中O为坐标原点.
(1)求直线l的方程,使△OAB的面积最小;
(2)求直线l的方程,是直线在两坐标上的截距之和最小;
(3)求|PA|•|PB|最小时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等比数列{an}的前n项和,若
S4
S2
=3,则
S6
S4
=(  )
A、、2
B、
7
3
C、
3
10
D、l或2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为三角形的内角,且cosα=-
2
5
5

(1)求sin2α的值
(2)求cos(
6
-2α)的值.

查看答案和解析>>

同步练习册答案