精英家教网 > 高中数学 > 题目详情
10.设n∈N,求证:
(1)$\sqrt{n+1}$-1<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{n}}$<$\sqrt{n}$;
(2)$\frac{1}{2n+1}$<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.

分析 (1)直接利用数学归纳法证明问题的步骤,证明不等式即可.
(2)利用$\frac{2n-1}{2n+1}$<$\frac{2n-1}{2n}$<$\frac{2n}{2n+1}$,即可证明不等式

解答 证明:(1)①n=1时,结论成立;
②假设n=k时,结论成立,即$\sqrt{k+1}$-1<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$<$\sqrt{k}$,
n=k+1时,$\sqrt{k+1}$-1+$\frac{1}{2\sqrt{k+1}}$<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$+$\frac{1}{2\sqrt{k+1}}$<$\sqrt{k}$+$\frac{1}{2\sqrt{k+1}}$,
∵$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$+$\frac{1}{2\sqrt{k+1}}$<$\sqrt{k}$+$\frac{1}{2\sqrt{k+1}}$<$\frac{2\sqrt{k(k+1)}+1}{2\sqrt{k+1}}$<$\frac{k+k+1+1}{2\sqrt{k+1}}$=$\sqrt{k+1}$,
$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$+$\frac{1}{2\sqrt{k+1}}$>$\sqrt{k+1}$-1+$\frac{1}{2\sqrt{k+1}}$=$\frac{2k+2+1}{2\sqrt{k+1}}$-1>$\sqrt{k+2}$-1,
∴当n=k+1时,不等式也成立.
由①②可知,不等式成立;
(2)∵4n2-1<4n2,即(2n+1)(2n-1)<(2n)2.即$\frac{2n-1}{2n}$<$\frac{2n}{2n+1}$,
∴($\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$)2<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$×$\frac{2}{3}$×$\frac{4}{5}$×…×$\frac{2n}{2n+1}$=$\frac{1}{2n+1}$,
∴$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$(n∈N*).
$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$>$\frac{1}{3}$×$\frac{3}{5}$×…×$\frac{2n-1}{2n+1}$=$\frac{1}{2n+1}$,
∴$\frac{1}{2n+1}$<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.

点评 本题考查数学归纳法证明含自然数n的表达式的证明方法,注意n=k+1的证明时,必须用上假设.利用放缩法证明的关键是放大与缩小,不能随便放缩.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.计算:(1)(-3)0-${0}^{\frac{1}{2}}$+(-2)-2-${16}^{\frac{1}{4}}$;
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若“1≤x≤3”是“0≤x≤m”的充分不必要条件,则实数m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ax3+bx+1(ab≠0),若f(2015)=k,则f(-2015)=(  )
A.k-2B.2-kC.1-kD.-k-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-($-\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+1.5-2
(2)已知log73=alog74=b,求log748.(其值用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.
(1)求证:BE∥平面DMF;
(2)求证:平面BDE∥平面MNG.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x+2)(1-$\frac{2}{x}$)4展开式的常数项为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设圆C:x2+y2-(2a2-4)x-4a2y+5a4-4=0.
(1)求实数a的范围以及圆心C的轨迹方程:
(2)若a=-1,过点P(0,-3)向圆C作切线PA、PB,切点为A,B,求四边形PACB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求y=tan(3x-$\frac{π}{6}$)的单调区间.

查看答案和解析>>

同步练习册答案