精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体ABCD-A1B1C1D1中,E、F分别是ABAA1的中点.

求证:(1)E、C、D1、F四点共面;

(2)CE、D1F、DA三线共点.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)要证四点共线,可证明EF//CD1,根据推论三可得四点共面;(2)从图中可以看出AD是平面ABCD与平面ADD1A1的交线,说明D1FCE相交,则交点在两平面的交线上,从而得三线共点

试题解析:

证明:(1)如图所示,连接CD1EFA1B

EF分别是ABAA1的中点,

FEA1BEFA1B.

A1D1BCA1D1=BC

四边形A1BCD1是平行四边形,

A1BD1CFED1C

EFCD1可确定一个平面,即ECD1F四点共面.

(2)(1)EFCD1,且EFCD1

四边形CD1FE是梯形,

直线CED1F必相交,设交点为P

PCE平面ABCD

PD1F平面A1ADD1

P平面ABCDP平面A1ADD1.

又平面ABCD平面A1ADD1AD

PADCED1FDA三线共点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点是圆内的一个定点,点是圆上的任意一点,线段的垂直平分线和半径相交于点,当点在圆上运动时,点的轨迹为曲线.

(1)求曲线的方程;

(2)点 ,直线轴交于点,直线轴交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运输公司接受了向一地区每天至少运送180 t物资的任务,该公司有8辆载重为6 t的A型卡车和4辆载重为10 t的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次,每辆卡车每天往返的费用为A型卡车320元,B型卡车504元,则公司如何调配车辆,才能使公司所花的费用最低,最低费用为________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·山东)f(x)xlnxax2(2a1)xa∈R.

(1)g(x)f′(x),求g(x)的单调区间;

(2)已知f(x)x1处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张纸的长、宽分别为2a2aABCD分别是其四条边的中点,现将其沿图中虚线折起,使得P1P2P3P4四点重合为一点P,从而得到一个多面体,关于该多面体的下列命题,正确的是________(写出所有正确命题的序号).

①该多面体是三棱锥;②平面BAD⊥平面BCD

③平面BAC⊥平面ACD④该多面体外接球的表面积为a2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·洛阳市统考)已知数列{an}的前n项和为Snan≠0a11,且2anan14Sn3(nN*)

(1)a2的值并证明:an2an2

(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)ex(ln xa)(e是自然对数的底数,

e2.71 828).

(1)yf(x)x1处的切线方程为y2exb,求ab的值.

(2)若函数f(x)在区间上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,焦距为2c,且c, ,2成等比数列.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)点B坐标为(0, ),问是否存在过点B的直线l交椭圆C于M,N两点,且满足 (O为坐标原点)?若存在,求出此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上是单调增函数,则实数的取值范围为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案