ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡­£¬An£¨xn£¬yn£©ÊÇÖ±Ïßl£ºy=kx+bÉϵÄn¸öµã
£¨n¡ÊN*£¬k¡¢b¾ùΪ·ÇÁã³£Êý£©£®
£¨1£©ÈôÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{yn}Ò²³ÉµÈ²îÊýÁУ»
£¨2£©ÈôµãPÊÇÖ±ÏßlÉÏÒ»µã£¬ÇÒ£¬Çóa1+a2µÄÖµ£»
£¨3£©ÈôµãPÂú×㣬ÎÒÃdzÆÊÇÏòÁ¿£¬£¬¡­£¬µÄÏßÐÔ×éºÏ£¬{an}ÊǸÃÏßÐÔ×éºÏµÄϵÊýÊýÁУ®µ±ÊÇÏòÁ¿£¬£¬¡­£¬µÄÏßÐÔ×éºÏʱ£¬Çë²Î¿¼ÒÔÏÂÏßË÷£º
¢ÙϵÊýÊýÁÐ{an}ÐèÂú×ãÔõÑùµÄÌõ¼þ£¬µãP»áÂäÔÚÖ±ÏßlÉÏ£¿
¢ÚÈôµãPÂäÔÚÖ±ÏßlÉÏ£¬ÏµÊýÊýÁÐ{an}»áÂú×ãÔõÑùµÄ½áÂÛ£¿
¢ÛÄÜ·ñ¸ù¾ÝÄã¸ø³öµÄϵÊýÊýÁÐ{an}Âú×ãµÄÌõ¼þ£¬È·¶¨ÔÚÖ±ÏßlÉϵĵãPµÄ¸öÊý»ò×ø±ê£¿
ÊÔÌá³öÒ»¸öÏà¹ØÃüÌ⣨»ò²ÂÏ룩²¢¿ªÕ¹Ñо¿£¬Ð´³öÄãµÄÑо¿¹ý³Ì£®[±¾Ð¡Ì⽫¸ù¾ÝÄãÌá³öµÄÃüÌ⣨»ò²ÂÏ룩µÄÍ걸³Ì¶ÈºÍÑо¿¹ý³ÌÖÐÌåÏÖµÄ˼ά²ã´Î£¬¸øÓ費ͬµÄÆÀ·Ö]£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÈôÉèµÈ²îÊýÁÐ{xn}µÄ¹«²îΪd£¬Ò×µÃyn+1-ynΪ³£Êý£¬¼´Ö¤ÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÓɵãP¡¢A1ºÍA2¶¼ÊÇÖ±ÏßlÉϵĵ㣬֪=¦Ë£¨ÆäÖЦˡÙ-1£©£»ÓÉÏòÁ¿µÄÏßÐÔÔËË㣬µÃ=+=+=+¦Ë£»ÕûÀí¿ÉµÃ=+£»¼´µÃa1+a2µÄÖµ£»
£¨3£©Éè´æÔÚµãP£¨x£¬y£©Âú×ã=a1+a2+¡­+an£¬Ôòx=a1x1+a2x2+¡­+anxn£¬µ±i+j=n+1ʱ£¬ÓÐai=aj£¬ËùÒÔx=anx1+an-1x2+¡­+a2xn-1+a1xn£¬Ôò2x=a1£¨x1+xn£©+a2£¨x2+xn-1£©+¡­+an£¨xn+x1£©£¬ÓÉÊýÁÐ{xn}ÊǵȲîÊýÁУ¬Ôòx1+xn=x2+xn-1=¡­=xn+x1£¬¿ÉµÃ2x£¬´Ó¶øµÃx£¬Í¬ÀíµÃy£»¼´µÃµãPÔÚÖ±ÏßlÉÏ£®
½â´ð£º½â£º£¨1£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{xn}µÄ¹«²îΪd£¬ÒòΪyn+1-yn=£¨kxn+1+b£©-£¨kxn+b£©=k£¨xn+1-xn£©=kdÊdz£Êý£¬
¡àÊýÁÐ{yn}µÈ²îÊýÁУ®
£¨2£©ÒòΪµãP¡¢A1ºÍA2¶¼ÊÇÖ±ÏßlÉÏÒ»µã£¬¹ÊÓÐ=¦Ë£¨ÆäÖЦˡÙ-1£©£»
ÓÚÊÇ£¬=+=+=+¦Ë£»
¡à=+¦Ë£¬¼´=+£»
Áîa1=£¬a2=£¬ÔòÓÐa1+a2=1£®
£¨3£©¼ÙÉè´æÔÚµãP£¨x£¬y£©Âú×ã=a1+a2+¡­+an£¬
ÔòÓÐx=a1x1+a2x2+¡­+anxn£¬ÇÒµ±i+j=n+1ʱ£¬ºãÓÐai=aj£¬
ËùÒÔÓÐx=anx1+an-1x2+¡­+a2xn-1+a1xn£¬
ËùÒÔ2x=a1£¨x1+xn£©+a2£¨x2+xn-1£©+¡­+an£¨xn+x1£©£¬
ÓÖÒòΪÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÓÚÊÇx1+xn=x2+xn-1=¡­=xn+x1£¬
ËùÒÔ£¬2x=£¨a1+a2+¡­+an£©£¨x1+xn£©=x1+xn£»
¹Êx=£¬Í¬Àíy=£¬ÇÒµãPÔÚÖ±ÏßlÉÏ£¨ÊÇA1¡¢AnµÄÖе㣩£¬
¼´´æÔÚµãPÂú×ãÒªÇó£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁÐÒÔ¼°Æ½ÃæÏòÁ¿ÖªÊ¶µÄ×ÛºÏÓ¦Óã¬ÊôÓÚ½ÏÄѵÄÌâÄ¿£»½âÌâʱÐëÒªÈÏÕæÉóÌ⣬ϸÐĽâ´ð£¬ÒÔÃâ³ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¡°·½³Ì
x2
k-1
+
y2
k-3
=1
±íʾ½¹µãÔÚxÖáÉϵÄË«ÇúÏß¡±µÄ³äÒªÌõ¼þÊÇk¡Ê
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Pn£¨n£¬n2£©£¨n¡ÊN+£©ÊÇÅ×ÎïÏßy=x2Éϵĵ㣬¡÷OPnPn+1µÄÃæ»ýΪSn£®
£¨1£©ÇóSn£»
£¨2£©»¯¼ò
1
S1
+
1
S2
+¡­+
1
Sn
£»
£¨3£©ÊÔÖ¤Ã÷S1+S2+¡­+Sn=
n(n+1)(n+2)
6
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬A(4+2
3
£¬2)£¬B(4£¬4)
£¬Ô²CÊÇ¡÷OABµÄÍâ½ÓÔ²£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©Èô¹ýµã£¨2£¬6£©µÄÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤Îª4
3
£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º
x=-2+
3
5
t
y=2+
4
5
t
£¨tΪ²ÎÊý£©£¬ËüÓëÇúÏßC£º£¨y-2£©2-x2=1½»ÓÚA£¬BÁ½µã£®
£¨1£©Çó|AB|µÄ³¤£»
£¨2£©ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉèµãPµÄ¼«×ø±êΪ(2
2
£¬
3¦Ð
4
)
£¬ÇóµãPµ½Ï߶ÎABÖеãMµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¾ØÐÎABCDµÄÁ½±ßAB£¬CD·Ö±ðÂäÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬ÇÒAB=2£¬AD=4£¬µãAÓë×ø±êÔ­µãÖغϣ®ÏÖ½«¾ØÐÎÕÛµþ£¬Ê¹µãAÂäÔÚÏ߶ÎDCÉÏ£¬ÈôÕÛºÛËùÔÚµÄÖ±ÏßµÄбÂÊΪk£¬ÊÔд³öÕÛºÛËùÔÚÖ±Ïߵķ½³Ì¼°kµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸