精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,已知三棱锥P=ABC中,PA⊥PC,D为AB的中点,M为PB的中点,且AB=2PD.
(1)求证:DM//面PAC;
(2)找出三棱锥P—ABC中一组面与面垂直的位置关系,并给出证明(只需找到一组即可).
(1)证明:依题意D为AB的中点,M为PB的中点
                                               …………1分
平面平面
                                           …………4分
(2)平面平面                                     …………5分
证明:由已知,又D为AB的中点
所以PD=BD,又知M为PB的中点
                                              …………8分
由(1)知
                                               …………9分
又由已知
平面,又平面
平面平面                                    …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个三棱柱的直观图和三视图如图所示(主视图、俯视图都是矩形,左视图是直角三角形),设为线段上的点.
(1)求几何体的体积;
(2)是否存在点E,使平面平面,若存在,求AE的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,已知正方体的棱长为2,分别是的中点.
(1)求三棱锥的体积;
(2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱柱的底面边长为,侧棱长为,则与侧面所成的角为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,平面,四边形是矩形,与平面所成角是,点的中点,点在矩形的边上移动.
(1)证明:无论点在边的何处,都有
(2)当等于何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱ABC-A1B1C1的侧棱垂直于底面,分别是的中点。 (Ⅰ)证明:平面
(Ⅱ)若点P在线段BN上,且三棱锥P-AMN的体积,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)正△的边长为4,边上的高,分别是
边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知是直角梯形,
平面
(1) 证明:
(2) 若的中点,证明:∥平面
(3)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点且满足,M,S分别为PB,BC的中点
(1)证明:CM⊥SN;
(2)求SN与平面CMN所成角的大小;
(3)求三棱锥P-ABC外接球的体积V。

查看答案和解析>>

同步练习册答案