精英家教网 > 高中数学 > 题目详情

【题目】如图1,梯形中, 中点.将沿翻折到的位置,如图2.

)求证:平面平面

)求直线与平面所成角的正弦值;

)设分别为的中点,试比较三棱锥和三棱锥(图中未画出)的体积大小,并说明理由.

【答案】证明见解析;( ;(Ⅲ)体积相等.

【解析】试题分析:由题意,利用线面垂直的判定定理,证得平面,再利用面面垂直的判定定理,即可证得,所以平面 平面.

根据题设中的垂直关系,建立空间直角坐标系,求出平面和平面的各自一个法向量,利用向量所成的角,即可求解线面角的正弦值.

方法一先证得平面,可得点到平面的距离相等即可得到三棱锥同底等高,所以体积相等

方法二:取中点,连接 ,分别得到 ,进而证得平面,即可点到平面的距离相等所以三棱锥同底等高,所以体积相等

试题解析:

证明:因为 平面

所以平面因为平面所以平面 平面

解:在平面内作

平面建系如图.

.

设平面的法向量为

所以是平面的一个方向量.

所以与平面所成角的正弦值为.

Ⅲ)解三棱锥和三棱锥的体积相等.

理由如:

方法一:由

因为平面所以平面.

故点到平面的距离相等有三棱锥同底等高,所以体积相等.

方法二如图,取中点,连接 .

因为在 分别是 的中点所以

因为在正方形 分别是 的中点,所以

因为 平面 平面

所以平面 平面

因为平面所以平面

故点到平面的距离相等有三棱锥同底等高,所以体积相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格(单位:人).

1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?

2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为的数学期望和方差.

参考公式: 其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】狄利克雷函数是高等数学中的一个典型函数,若则称为狄利克雷函数.对于狄利克雷函数给出下面4个命题:①对任意都有;②对任意都有;③对任意都有 ;④对任意,都有.其中所有真命题的序号是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中, 成等差数列;数列中的前项和为 .

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某协会对两家服务机构进行满意度调查,在两家服务机构提供过服务的市民中随机抽取了人,每人分别对这两家服务机构进行独立评分,满分均为分.整理评分数据,将分数以为组距分成组:,得到服务机构分数的频数分布表,服务机构分数的频率分布直方图:

定义市民对服务机构评价的“满意度指数”如下:

分数

满意度指数

0

1

2

(1)在抽样的人中,求对服务机构评价“满意度指数”为的人数;

(2)从在两家服务机构都提供过服务的市民中随机抽取人进行调查,试估计对服务机构评价的“满意度指数”比对服务机构评价的“满意度指数”高的概率;

(3)如果从服务机构中选择一家服务机构,以满意度出发,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求曲线在点处的切线方程;

)求证:“”是“函数有且只有一个零点” 的充分必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和为,且.

1)求证:数列是等差数列;

2)设,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=1,an+1 (n∈N*).

(1)证明:数列是等比数列;

(2)设bn,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校初三年级有名学生,随机抽查了名学生,测试分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )

A. 该校初三年级学生分钟仰卧起坐的次数的中位数为

B. 该校初三年级学生分钟仰卧起坐的次数的众数为

C. 该校初三年级学生分钟仰卧起坐的次数超过次的人数约有

D. 该校初三年级学生分钟仰卧起坐的次数少于次的人数约为人.

查看答案和解析>>

同步练习册答案