精英家教网 > 高中数学 > 题目详情
若(-4,3)是角α终边上的一点,求cos(α-
π
2
)•
tan(α-π)
sin(-π-α)
•cos(α+5π)的值.
考点:运用诱导公式化简求值,任意角的三角函数的定义
专题:三角函数的求值
分析:由条件利用任意角的三角函数的定义求出 cosα和 sinα的值,再利用诱导公式化简所给的式子,可得结果.
解答: 解:∵(-4,3)是角α终边上的一点,∴x=-4,y=3,r=5,cosα=-
4
5
,sinα=
3
5

∴cos(α-
π
2
)•
tan(α-π)
sin(-π-α)
•cos(α+5π)=sinα•
tanα
sinα
(-cosα)=-sinα=
4
5
点评:本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数满足f(3x+1)=9x2-6x+5.
(1)求f(x)的解析式;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有一个均匀的陀螺,其圆周的一半上均匀的刻上[0,1]上的诸数字,另一半上均匀地刻上区间[1,3]上的数字,旋转陀螺,求:它停下来时,其圆周上触及桌面的刻度位于[0.5,1.5]上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在(0,+∞)上的增函数,且对于任意x1,x2∈(0,+∞),总有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)证明:对于任意x1,x2∈(0,+∞),总有f(
x1
x2
)=f(x1)-f(x2);
(3)若f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是(  )
A、[
4
2
-5
2
4
2
+5
2
]
B、[2
2
-2,2
2
+2]
C、[
3-2
2
2
3+2
2
2
]
D、[3
2
-2,3
2
+2]

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=(
1
a
+i)a,(a∈R且a≠0)对应的点在复平面内位于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
1
1+2sinx
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,|
AC
|=|
CB
|=1,∠ACB=120°,O为△ABC的外心,
AO
AC
AB
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是正项数列{an}的前n项和,4Sn=(an+1)2
(1)求Sn
(2)设数列{bn}满足bn=
2
4Sn-1
,数列{bn}的前n项和为Tn,若不等式λTn<n+8对于任意n∈N*恒成立,试求λ的取值范围.
(3)设dn=
Sn
3
Sn
+1
,是否存在正整数m,n,且1<m<n,使的d1,dm,dn成等比数列?若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案