精英家教网 > 高中数学 > 题目详情
(2011•蓝山县模拟)已知关于x的一元二次不等式ax2+bx+c≥0在实数集上恒成立,且a<b,则T=
a+b+cb-a
的最小值为
3
3
分析:从二次函数的二次项系数及判别式限制,得到a,b,c满足的不等关系;将M中的c利用得到的不等关系去掉;将代数式变形,利用基本不等式求出最小值,
解答:解:∵一元二次不等式ax2+bxx+c≥0对一切实数x都成立,
当a=0时,不符合题意;
当a≠0时,根据y=ax2+bxx+c的图象
a>0
△≤0
,由此
a>0
b2-4ac≤0

∵b>a>0∴b-a>0
∵b2≤4ac得c
b2
4a

T=
a+b+c
b-a
a+b+
b2
4a
b-a
=
(2a+b)2
4a(b-a)
=
[3a+(b-a)]2
4a(b-a)
4(b-a)×3a
4a(b-a)
=3

当且仅当3a=b-a且c=
b2
4a
即c=b=4a时,取等号
故答案为3
点评:主要考查了二次函数的恒成立问题.二次函数的恒成立问题分两类,一是大于0恒成立须满足开口向上,且判别式小于0,二是小于0恒成立须满足开口向下,且判别式小于0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)已知m是一个给定的正整数,如果两个整数a,b被m除得的余数相同,则称a与b对模m同余,记作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),则r可以为(  )

查看答案和解析>>

同步练习册答案