9£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ºÍÅ×ÎïÏßy2=2px£¨p£¾0£©ÏཻÓÚA¡¢BÁ½µã£¬Ö±ÏßAB¹ýÅ×ÎïÏߵĽ¹µãF1£¬ÇÒ|AB|=8£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
£¨I£©ÇóÍÖÔ²ºÍÅ×ÎïÏߵıê×¼·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ¬Èô²»´æÔÚ£®Çë˵Ã÷ÀíÓÉ£»Èô´æÔÚ£¬ÇëÇó³öÖ±Ïß·½³Ì£®

·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßµÄͨ¾¶Îª8£¬ÓÉ´ËÇóµÃpÖµ£¬ÔòÅ×ÎïÏß·½³Ì¿ÉÇó£»ÔÙÓÉÍÖÔ²ÀëÐÄÂÊ»¯ÍÖÔ²·½³ÌΪx2+2y2-2b2=0£®°ÑAµÄ×ø±ê´úÈëÍÖÔ²·½³ÌÇóµÃbÖµ£¬½øÒ»²½µÃµ½aÖµ£¬ÔòÍÖÔ²±ê×¼·½³Ì¿ÉÇó£»
£¨¢ò£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄÖ±Ïßl£¬Éè³öÖ±Ïß·½³Ìy=kx+2k£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬ÓÉÅбðʽµÈÓÚ0ÇóµÃkÖµ£¬µÃµ½Ö±Ïß·½³Ì£¬ÔÙÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃÏÒ³¤Îª$\frac{20\sqrt{2}}{3}$£¬ËµÃ÷´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬ABΪÅ×ÎïÏßy2=2px£¨p£¾0£©µÄͨ¾¶£®
¼´2p=8£¬¡àp=4£®
ÔòÅ×ÎïÏß·½³ÌΪy2=8x£»
¡àF1£¨2£¬0£©£¬ÔòA£¨2£¬4£©£®
ÓÉÍÖÔ²µÄÀëÐÄÂÊ$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬µÃ$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$£¬¼´$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{2}$£¬¡àa2=2b2£®
ÔòÍÖÔ²·½³ÌΪx2+2y2-2b2=0£®
¡ßAÔÚÍÖÔ²ÉÏ£¬¡à22+2¡Á42-2b2=0£¬½âµÃb2=18£¬
¡àa2=2b2=36£®
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{18}=1$£»
£¨¢ò£©ÓÉÌâÒ⣬¼ÙÉè´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ¬
ÉèÖ±Ïß·½³ÌΪy=kx+2k£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2k}\\{{y}^{2}=8x}\end{array}\right.$£¬ÏûÈ¥yµÃ£ºk2x2+£¨4k2-8£©x+4k2=0£®
ÓÉ¡÷=£¨4k2-8£©2-16k4=0£¬½âµÃ£ºk=¡À1£®
µ±k=1ʱ£¬ÔòÖ±Ïß·½³ÌΪy=x+2£®
ÁªÁ¢$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{36}+\frac{{y}^{2}}{18}=1}\end{array}\right.$£¬ÏûÈ¥yµÃ£º3x2+8x-28=0£®
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=-\frac{8}{3}£¬{x}_{1}{x}_{2}=-\frac{28}{3}$£®
¡à|CD|=$\sqrt{2}\sqrt{£¨-\frac{8}{3}£©^{2}+4¡Á\frac{28}{3}}$=$\frac{20\sqrt{2}}{3}$£®
ͬÀí¿ÉµÃ£¬y=-x+2Âú×ãÌâÒ⣮
¹Ê´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ¬Ö±Ïß·½³ÌΪy=¡Àx+2£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌºÍÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¹Ø¼üÊÇÇå³þԲ׶ÇúÏߵĶԳÆÐÔ£¬¿¼²éÁËÅ×ÎïÏßͨ¾¶µÄÓ¦Óã¬ÑµÁ·ÁËÀûÓÃÏÒ³¤¹«Ê½ÇóÏÒ³¤£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚƽÐÐËıßÐÎÐÎABCDÖУ¬ÒÑÖªAB=8£¬AD=6£¬¡ÏBAD=$\frac{2¦Ð}{3}$£¬µãE£¬F·Ö±ðÔÚ±ßBC£¬DCÉÏ£¬ÇÒBC=3BE£¬DC=¦ËDF£¬$\overrightarrow{AE}$•$\overrightarrow{AF}$=16£¬Ôò¦ËµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÖ±ÏßµÄÇãб½Ç¦Á=30¡ã£¬ÇÒÖ±Ïß¹ýµãM£¨2£¬1£©£¬Ôò´ËÖ±Ïߵķ½³ÌΪ$\sqrt{3}x-3y+3-2\sqrt{3}$=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª¶¯µãPµ½µã£¨2£¬0£©µÄ¾àÀë±Èµ½Ö±Ïßx=-3µÄ¾àÀëС1£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÉäÏßOA£¬OBÓëxÖáµÄÕý·½Ïò·Ö±ð³É45¡ãÓë30¡ãµÄ½Ç£¬¹ýµãP£¨1£¬0£©µÄÖ±ÏßÓëÁ½ÉäÏß·Ö±ð½»ÓÚC£¬D£¬ÈôÏ߶ÎCDµÄÖеãÇ¡ºÃÔÚÖ±Ïßy=$\frac{1}{2}$xÉÏ£¬ÇóCDËùÔÚÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èôº¯Êýf£¨x£©=|ax-2|+lnx-$\frac{1}{x}$£¬£¨a¡Ý2£©ÔÚ£¨0£¬1]ÉÏûÓÐÁãµã£®ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[2£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÅ×ÎïÏßy2=4xµÄ½¹µãΪF£¬ÓëyÖáÏàÇеÄÔ²C¹ýµãF²¢ÓëÅ×ÎïÏß½»ÓÚµãM£¬ÇÒ|MF|=2£¬ÔòÔ²CµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2¦ÐB£®¦ÐC£®3¦ÐD£®4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¹ýµãM£¨-4£¬2£©£¬Çãб½ÇÊÇ90¡ãµÄÖ±Ïß·½³ÌΪx=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªPQÓëÔ²OÏàÇÐÓÚµãA£¬Ö±ÏßPBC½»Ô²ÓÚB¡¢CÁ½µã£¬DÊÇÔ²ÉÏÒ»µã£¬ÇÒAB¡ÎDC£¬DCµÄÑÓ³¤Ïß½»PQÓÚµãQ£®
£¨1£©ÇóÖ¤£ºAC2=CQ•AB£»
£¨2£©ÈôAQ=2AP£¬AB=$\sqrt{2}$£¬BP=2£¬ÇóQD£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸