【题目】商品的销售价格与销售量密切相关,为更精准地为商品确定最终售价,商家对商品A按以下单价进行试售,得到如下数据:
单价x(元) | 15 | 16 | 17 | 18 | 19 |
销量y(件) | 60 | 58 | 55 | 53 | 49 |
(1)求销量y关于x的线性回归方程;
(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每件商品A的成本是10元,为了获得最大利润,商品A的单价应定为多少元?(结果保留整数)
(附:,.(15×60+16×58+17×55+18×53+19×49=4648,152+162+172+182+192=1455)
科目:高中数学 来源: 题型:
【题目】某公司有4家直营店, , , ,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有
A. 种 B. 种 C. 种 D. 种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,,,,,分别是,的中点,在上且.
(I)求证:;
(II)求直线与平面所成角的正弦值;
(III)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆锥的底面的直径,是圆上异于的任意一点,以为直径的圆与的另一个交点为为的中点.现给出以下结论:
①为直角三角形
②平面平面
③平面必与圆锥的某条母线平行
其中正确结论的个数是
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为陕西博物馆收藏的国宝——唐·金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯型几何体的主体部分可近似看作是双曲线的右支与直线,,围成的曲边四边形绕轴旋转一周得到的几何体,如图分别为的渐近线与,的交点,曲边五边形绕轴旋转一周得到的几何体的体积可由祖恒原理(祖恒原理:幂势既同,则积不容异).意思是:两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等,那么这两个几何体的体积相等),据此求得该金杯的容积是_____.(杯壁厚度忽略不计)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知动点P与两定点F1(﹣1,0)、F2(1,0)的连线的斜率之积为,求动点P的轨迹方程.
(2)已知双曲线的渐近线方程为y=±x,且与椭圆1有公共焦点,求此双曲线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是直角梯形,,,和是两个边长为2的正三角形,,为的中点,为的中点.
(1)证明:平面.
(2)在线段上是否存在一点,使直线与平面所成角的正弦值为?若存在,求出点的位置;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com