精英家教网 > 高中数学 > 题目详情

【题目】【选修4—4:坐标系与参数方程】

将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.

Ⅰ)写出C的参数方程;

设直线C的交点为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

【答案】 得参数方程为 为参数) II

【解析】试题分析:(1)根据变换得,再利用三角换元得2)先求出直角坐标方程:由直线方程与椭圆方程解得交点坐标P120),P201),得中点坐标,利用点斜式得直线方程,最后根据得极坐标方程

试题解析:(I)设(x1y1)为圆上的点,在已知变换下变为C上点(xy),

依题意得:圆的参数方程为t为参数)

所以C的参数方程为t为参数).

II)由解得

所以P120),P201),则线段P1P2的中点坐标为,所求直线的斜率k,于是所求直线方程为,并整理得

化为极坐标方程, ,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
其中 为样本容量。

P(K2≥k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(1)根据以上数据建立一个 的列联表;
(2)试判断是否有95%的把握认为是否晕机与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知海岛A到海岸公路BC的距离AB=50km,B,C间的距离为100km,从A到C必须先坐船到BC上的某一点D,航速为25km/h,再乘汽车到C,车速为50km/h,记∠BDA=θ
(1)试将由A到C所用的时间t表示为θ的函数t(θ);
(2)问θ为多少时,由A到C所用的时间t最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线经过曲线的左焦点

(1)求直线的普通方程;

(2)设曲线的内接矩形的周长为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)是定义在R上的偶函数,在(﹣∞,0]上单调递减,且f(﹣4)=0,则使得x|f(x)+f(﹣x)|<0的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有三个不同的极值点,求的值;

(2)若存在实数,使对任意的,不等式恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知.

(1)若的解集为,求的值;

(2)若不等式恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下表:

步数

性别

02000

20015000

50018000

800110000

>10000

1

2

4

7

6

0

3

9

6

2

若某人一天的走路步数超过8000步被系统评定为“积极型”,否则被系统评定为“懈怠型”.

(1)利用样本估计总体的思想,试估计小明的所有微信好友中每日走路步数超过10000步的概率;

(2)根据题意完成下面的列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?

积极型

懈怠型

总计

总计

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:①y=1是幂函数;
②定义在R上的奇函数y=f(x)满足f(0)=0
③函数 是奇函数
④当a<0时,
⑤函数y=1的零点有2个;
其中正确结论的序号是(写出所有正确结论的编号).

查看答案和解析>>

同步练习册答案