ÒÑÖªÕýÏîÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒSn=
an(an+2)
4
£¨n¡ÊN*£©£®
£¨1£©Çóa1µÄÖµ¼°ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÖ¤£º
1
a
3
1
+
1
a
3
2
+
1
a
3
3
+¡­+
1
a
3
n
£¼
5
32
£¨n¡ÊN*£©£»
£¨3£©ÊÇ·ñ´æÔÚ·ÇÁãÕûÊý¦Ë£¬Ê¹²»µÈʽ¦Ë£¨1-
1
a1
£©£¨1-
1
a2
£©¡­£¨1-
1
an
£©cos
¦Ðan+1
2
£¼
1
an+1
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÀûÓõ±n=1ʱ£¬a1=S1=
a1(a1+2)
4
£¬Çóa1µÄÖµ£¬¸ù¾Ýµ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤·¨Ò»¡¢¶þ£ºÏÈ·ÅËõ£¬ÔÙÁÑÏîÇóºÍ£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©Çó³öÊýÁÐ{bn}µÄͨÏ֤Ã÷Æäµ¥µ÷µÝÔö£¬¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ£¨-1£©n+1¦Ë£¼bn¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬·ÖÀàÌÖÂÛÇó×îÖµ£¬¼´¿ÉÇó³ö¦ËµÄÖµ£®
½â´ð£º£¨1£©½â£ºÓÉSn=
an(an+2)
4
£®
µ±n=1ʱ£¬a1=S1=
a1(a1+2)
4
£¬½âµÃa1=2»òa1=0£¨ÉáÈ¥£©£® ¡­2·Ö
µ±n¡Ý2ʱ£¬ÓÉan=Sn-Sn-1=
an(an+2)
4
-
an-1(an-1+2)
4

¡àan2-an-12=2(an+an-1)£¬
¡ßan£¾0£¬¡àan+an-1¡Ù0£¬Ôòan-an-1=2£¬
¡à{an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬¹Êan=2n£® ¡­4·Ö
£¨2£©Ö¤·¨Ò»£º¡ß
1
an3
=
1
(2n)3
=
1
8n•n2
£¼
1
8n(n2-1)
=
1
8(n-1)n(n+1)
=
1
16
[
1
(n-1)n
-
1
n(n+1)
](n¡Ý2)
£¬¡­4·Ö
¡àµ±n¡Ý2ʱ£¬
1
a13
+
1
a23
+
1
a33
+¡­+
1
an3
=
1
23
+
1
43
+
1
63
+¡­+
1
(2n)3
£¼
1
23
+
1
16
[(
1
1¡Á2
-
1
2¡Á3
)+(
1
2¡Á3
-
1
3¡Á4
)+¡­+
1
(n-1)n
-
1
n(n+1)
]
=
1
8
+
1
16
[
1
2
-
1
n(n+1)
]£¼
1
8
+
1
16
¡Á
1
2
=
5
32
£®¡­7·Ö
µ±n=1ʱ£¬²»µÈʽ×ó±ß=
1
a13
=
1
8
£¼
5
32
ÏÔÈ»³ÉÁ¢£®¡­8·Ö
Ö¤·¨¶þ£º¡ßn3-4n£¨n-1£©=n£¨n2-4n+4£©=n£¨n-2£©2¡Ý0£¬¡àn3¡Ý4n£¨n-1£©£®
¡à
1
an3
=
1
(2n)3
=
1
8n3
¡Ü
1
32n(n-1)
=
1
32
(
1
n-1
-
1
n
)
£¨n¡Ý2£©£®¡­4·Ö
¡àµ±n¡Ý2ʱ£¬
1
a13
+
1
a23
+
1
a33
+¡­+
1
an3
=
1
23
+
1
43
+
1
63
+¡­+
1
(2n)3
¡Ü
1
23
+
1
32
[(1-
1
2
)+(
1
2
-
1
3
)+¡­+(
1
n-1
-
1
n
)]=
1
8
+
1
32
(1-
1
n
)£¼
1
8
+
1
32
=
5
32
£®¡­7·Ö
µ±n=1ʱ£¬²»µÈʽ×ó±ß=
1
a13
=
1
8
£¼
5
32
ÏÔÈ»³ÉÁ¢£®¡­8·Ö
£¨3£©½â£ºÓÉan=2n£¬µÃcos
¦Ðan+1
2
=cos(n+1)¦Ð=(-1)n+1
£¬
Éèbn=
1
(1-
1
a1
)(1-
1
a2
)•¡­•(1-
1
an
)
an+1
£¬Ôò²»µÈʽµÈ¼ÛÓÚ.
bn+1
bn
=
an+1
(1-
1
an+1
)
an+1+1
=
2n+1
(1-
1
2n+2
)
2n+3
=
2n+2
(2n+1)(2n+3)
=
4n2+8n+4
4n2+8n+3
£¾1
£¬¡­9·Ö
¡ßbn£¾0£¬¡àbn+1£¾bn£¬ÊýÁÐ{bn}µ¥µ÷µÝÔö£®¡­10·Ö
¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ£¨-1£©n+1¦Ë£¼bn¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò
¢Ùµ±nΪÆæÊýʱ£¬µÃ¦Ë£¼(bn)min=b1=
2
3
3
£» ¡­11·Ö
¢Úµ±nΪżÊýʱ£¬µÃ-¦Ë£¼(bn)min=b2=
8
5
15
£¬¼´¦Ë£¾-
8
5
15
£®¡­12·Ö
×ÛÉÏ£¬¦Ë¡Ê(-
8
5
18
£¬
2
3
3
)
£¬ÓɦËÊÇ·ÇÁãÕûÊý£¬Öª´æÔÚ¦Ë=¡À1Âú×ãÌõ¼þ£®¡­14·Ö
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éÊýÁÐÓë²»µÈʽµÄÁªÏµ£¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬ȷ¶¨ÊýÁеÄͨÏÕýÈ··ÅËõ£¬ºÏÀíÔËÓÃÇóºÍ¹«Ê½Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕýÏîÊýÁÐ{an}Âú×㣺a1=3£¬£¨2n-1£©an+2=£¨2n+1£©an-1+8n2£¨n£¾1£¬n¡ÊN*£©
£¨1£©ÇóÖ¤£ºÊýÁÐ{
an
2n+1
}
ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏîan£®
£¨2£©Éèbn=
1
an
£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬²¢ÇóSnµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺³Æ
n
a1+a2+¡­+an
Ϊn¸öÕýÊýa1£¬a2£¬¡­£¬anµÄ¡°¾ùµ¹Êý¡±£¬ÒÑÖªÕýÏîÊýÁÐ{an}µÄÇ°nÏîµÄ¡°¾ùµ¹Êý¡±Îª
1
2n
£¬Ôò
lim
n¡ú¡Þ
nan
sn
£¨¡¡¡¡£©
A¡¢0
B¡¢1
C¡¢2
D¡¢
1
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕýÏîÊýÁÐanÖУ¬a1=2£¬µã(
an
£¬an+1)
ÔÚº¯Êýy=x2+1µÄͼÏóÉÏ£¬ÊýÁÐbnÖУ¬µã£¨bn£¬Tn£©ÔÚÖ±Ïßy=-
1
2
x+3
ÉÏ£¬ÆäÖÐTnÊÇÊýÁÐbnµÄÇ°ÏîºÍ£®£¨n¡ÊN+£©£®
£¨1£©ÇóÊýÁÐanµÄͨÏʽ£»
£¨2£©ÇóÊýÁÐbnµÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕýÏîÊýÁÐ{an}Âú×ãa1=1£¬an+1=an2+2an£¨n¡ÊN+£©£¬Áîbn=log2£¨an+1£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ»
£¨2£©¼ÇTnΪÊýÁÐ{
1
log2bn+1log2bn+2
}
µÄÇ°nÏîºÍ£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ²»µÈʽTn£¼log0.5(a2-
1
2
a)
¶Ô?n¡ÊN+ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öʵÊýaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕýÏîÊýÁÐ{an}£¬Sn=
1
8
(an+2)2

£¨1£©ÇóÖ¤£º{an}ÊǵȲîÊýÁУ»
£¨2£©Èôbn=
1
2
an-30
£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸