精英家教网 > 高中数学 > 题目详情
已知椭圆C经过点M(1,
32
),两个焦点是F1(-1,0)和F2(1,0)
(I)求椭圆C的方程;
(II)若A、B为椭圆C的左、右顶点,P是椭圆C上异于A、B的动点,直线AP 与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,求证:以BD为直径的圆与直线的圆与直线PF2相切.
分析:(I)设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),求出M到焦点的距离,利用椭圆的定义,即可求得椭圆C的方程;
(II)设直线AP的方程,代入椭圆方程,利用韦达定理,求得P的坐标,分类讨论,证明圆心E到直线PF2的距离等于半径,即可求得结论.
解答:(I)解:设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0)
∵M(1,
3
2
),两个焦点是F1(-1,0)和F2(1,0)
∴|MF1|=
5
2
|MF2|=
3
2

∴2a=|MF1|+|MF2|=4
∴a=2
b=
a2-c2
=
3

∴椭圆C的方程为
x2
4
+
y2
3
=1

(II)证明:由题意,A(-2,0),B(2,0),设直线AP:y=k(x+2)(k≠0),则D(2,4k),|BD|=4|k|,BD中点E(2,2k),以BD为直径的圆E方程是(x-2)2+(y-4k)2=4k2
直线方程代入椭圆方程,消去y可得(3+4k2)+16k2x+16k2-12=0
设P(x0,y0),则x0=
6-8k2
3+4k2
y0=k(x0+2)=
12k
3+4k2

当直线PF2⊥x轴时,∵F2(1,0),∴x0=1,k=±
1
2

以BD为直径的圆(x-2)2+(y±1)2=1与直线PF2相切;
当直线PF2与x轴不垂直时,k≠±
1
2
,直线PF2的斜率为
4k
1-4k2
,方程为4kx-(1-4k2)y-4k=0
圆心E到直线PF2的距离为
|2k(1+4k2)|
(1+4k2)2
=2|k|

∴以BD为直径的圆与直线PF2相切,
综上可得,以BD为直径的圆与直线的圆与直线PF2相切.
点评:本题考查椭圆的标准方程,考查椭圆的定义,考查直线与圆的位置关系,利用圆心到直线的距离与半径的关系是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂三模)已知椭圆C经过点M(1,
32
)
,其左顶点为N,两个焦点为(-1,0),(1,0),平行于MN的直线l交椭圆于A,B两个不同的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线MA,MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:2013年山东省临沂市高考数学三模试卷(文科)(解析版) 题型:解答题

已知椭圆C经过点M,其左顶点为N,两个焦点为(-1,0),(1,0),平行于MN的直线l交椭圆于A,B两个不同的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线MA,MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省丹东市四校协作体高三摸底(零诊)数学试卷(理科)(解析版) 题型:解答题

已知椭圆C经过点M(1,),两个焦点是F1(-1,0)和F2(1,0)
(I)求椭圆C的方程;
(II)若A、B为椭圆C的左、右顶点,P是椭圆C上异于A、B的动点,直线AP 与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,求证:以BD为直径的圆与直线的圆与直线PF2相切.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省丹东市四校协作体高三摸底(零诊)数学试卷(文科)(解析版) 题型:解答题

已知椭圆C经过点M(1,),两个焦点是F1(-1,0)和F2(1,0)
(I)求椭圆C的方程;
(II)若A、B为椭圆C的左、右顶点,P是椭圆C上异于A、B的动点,直线AP 与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,求证:以BD为直径的圆与直线的圆与直线PF2相切.

查看答案和解析>>

同步练习册答案