【题目】设为实数,给出命题,;命题:函数的值域为.
(1)若为真命题,求实数的取值范围;
(2)若为真,为假,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】对于正整数,如果个整数满足,
且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.
(Ⅰ)写出整数4的所有“正整数分拆”;
(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;
(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.
(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数(,),关于的不等式的解集中有且只有一个元素.
(1)设数列的前项和(),求数列的通项公式;
(2)设(),则数列中是否存在不同的三项能组成等比数列?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是函数定义域内的一个子集,若存在,使得成立,则称是的一个“不动点”,也称在区间上存在不动点.
设函数,.
(1)若,求函数的不动点;
(2)若函数在上不存在不动点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当x∈[0,1]时,下列关于函数y=的图象与的图象交点个数说法正确的是( )
A. 当时,有两个交点B. 当时,没有交点
C. 当时,有且只有一个交点D. 当时,有两个交点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆:()的离心率为,右准线方程是直线l:,点P为直线l上的一个动点,过点P作椭圆的两条切线,切点分别为AB(点A在x轴上方,点B在x轴下方).
(1)求椭圆的标准方程;
(2)①求证:分别以为直径的两圆都恒过定点C;
②若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为( )
A.84B.56C.35D.28
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com