精英家教网 > 高中数学 > 题目详情

【题目】为实数,给出命题;命题:函数的值域为

1)若为真命题,求实数的取值范围;

2)若为真,为假,求实数的取值范围.

【答案】12

【解析】

先化简命题:,则有解,设,求其最小值即可.命题:函数的值域为.则只需真数取遍一切正实数,则由求解.

1)若为真,则都为真求解.

2)若为真,为假,则一真一假,分假和真,两种情况分类求解.

,则上时增函数,

故当时,的最小值为

为真,则

因为函数的值域为

则只需真数取遍一切正实数,

所以,所以

命题为真命题,则

1)若为真,则实数满足

即实数的取值范围为

2)若为真,为假,则一真一假.

假,则实数满足

真,则实数满足

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于正整数,如果个整数满足

,则称数组的一个正整数分拆”.均为偶数的正整数分拆的个数为均为奇数的正整数分拆的个数为.

()写出整数4的所有正整数分拆”;

()对于给定的整数,设的一个正整数分拆,且,求的最大值;

()对所有的正整数,证明:;并求出使得等号成立的的值.

(:对于的两个正整数分拆,当且仅当时,称这两个正整数分拆是相同的.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,若恰有一个零点,求实数的取值范围;

2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)设正实数满足,则()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数),关于的不等式的解集中有且只有一个元素.

1)设数列的前项和),求数列的通项公式;

2)设),则数列中是否存在不同的三项能组成等比数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数定义域内的一个子集,若存在,使得成立,则称的一个“不动点”,也称在区间上存在不动点.

设函数

(1)若,求函数的不动点;

(2)若函数上不存在不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x[01]时,下列关于函数y=的图象与的图象交点个数说法正确的是(  )

A. 时,有两个交点B. 时,没有交点

C. 时,有且只有一个交点D. 时,有两个交点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆:()的离心率为,右准线方程是直线l,点P为直线l上的一个动点,过点P作椭圆的两条切线,切点分别为AB(点Ax轴上方,点Bx轴下方).

1)求椭圆的标准方程;

2)①求证:分别以为直径的两圆都恒过定点C

②若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为( )

A.84B.56C.35D.28

查看答案和解析>>

同步练习册答案