精英家教网 > 高中数学 > 题目详情
14.已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是(  )
A.$\frac{17}{4}$B.$\frac{7}{2}$C.$\frac{25}{4}$D.$\frac{27}{4}$

分析 先根据抛物线方程求得焦点坐标,设B点坐标为(xB,yB),由AB直线过焦点F知8yB=-16,则yB=-2,进而可得xB=$\frac{1}{2}$,根据抛物线的定义求得答案.

解答 解:由y2=8x,知2p=8,p=4.
B点坐标为(xByB),由AB直线过焦点F知8yB=-16,则yB=-2,
xB=$\frac{1}{2}$,∴线段AB的中点到准线的距离为 $\frac{17}{4}$+2=$\frac{25}{4}$.
股选:C.

点评 本题主要考查了直线与抛物线的关系.当涉及抛物线的焦点弦的问题时,常利用抛物线的定义来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数y=(m-1)x2+(m-3)x+(m-1),m取什么实数时,函数图象与x轴,
(1)没有公共点;
(2)只有一个公共点;
(3)有两个不同的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}$,则$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$\frac{9}{2}$B.5C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,椭圆C:$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的上顶点到焦点的距离为2,椭圆上的点到焦点的最远距离为2+$\sqrt{3}$.
(1)求椭圆的方程.
(2)设P(M,0)是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)当k=1时,|AB|=$\frac{8}{5}$$\sqrt{2}$,求M的值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知变量x,y∈R且满足约束条件$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$则x+2y的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)满足f(x-y)=$\frac{f(x)}{f(y)}$,f(x)≠0,且x>0时,f(x)>1,已知f(4)=16.
(1)求f(0)和f(2)的值;
(2)求使不等式f(2x-3)f(2-3x)≤4成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是R上的奇函数,若对于x≥0,都有f(x+4)=f(x),且当x∈[0,4)时,f(x)=log2(x+1).则f(2013)+f(-3015)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.偶函数f(x)的图象关于x=1对称,且当x∈[0,1]时,f(x)=x,则函数y=f(x)的图象与函数y=lg|x|的图象的交点个数为(  )
A.14B.16C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)满足f(x)+2f($\frac{1}{x}$)=ax,则函数f(x)的解析式为f(x)=$\frac{2a}{3x}-\frac{ax}{3}$.

查看答案和解析>>

同步练习册答案