精英家教网 > 高中数学 > 题目详情
已知函数f(x)是二次函数且满足f(x+1)+f(x-1)=x2-2x-1,求函数f(x)解析式.
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:由题意设f(x)=ax2+bx+c,a≠0,代入已知式子比较系数可得a、b、c的方程组,解方程组可得函数解析式.
解答: 解:由题意设f(x)=ax2+bx+c,a≠0,
则f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c+a(x-1)2+b(x-1)+c
=2ax2+2bx+2a+2c=x2-2x-1,
∴2a=1,2b=-2,2a+2c=-1,
解得a=
1
2
,b=-1,c=-1,
∴f(x)解析式为:f(x)=
1
2
x2-x-1
点评:本题考查函数解析式的求解,涉及待定系数法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{3n-1an}的前n项和为Sn,且Sn=
n
3
,a∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
n
an
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,i(-1+2i)=(  )
A、i+2B、i-2
C、-2-iD、2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
100
+
y2
25
=1的上顶点为A,直线y=-4交椭圆E于点B,C(点B在点C的左侧),点P在椭圆E上.
(Ⅰ)求以原点为顶点,椭圆的右焦点为焦点的抛物线的方程;
(Ⅱ)若四边形ABCD为梯形,求点P的坐标;
(Ⅲ)若
BP
=m•
BA
+n•
BC
(m,n为实数),求m+n的最大值及对应的P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x-y+
6
=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线L:y=kx+m与椭圆C相交于A、B两点,且kOA•kOB=-
b2
a2
,求证:△AOB的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=2x+
1
2x

(1)判断f(x)为奇偶性;
(2)证明f(x)函数在[0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的焦距为2,且过点(1,
2
2
),右焦点为F2.设A,B是C上的两个动点,线段AB的中点M的横坐标为-
1
2
,线段AB的中垂线交椭圆C于P,Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ACBD内接于圆O,对角线AC与BD相交于M,AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于H,求证:
(1)EF⊥AB          
(2)OH=ME.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b≥1)
过点P(2,1),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)直线的l的斜率为
1
2
,直线l与椭圆C交于A、B两点.求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案