精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

【答案】(1) ;(2) .

【解析】试题分析:(1) 利用将曲线的极坐标方程化为直角坐标方程,(2)根据直线参数方程几何意义得,所以先将直线参数方程代入抛物线方程,利用韦达定理得,从而可解得

试题解析:(I)曲线,即,于是有,化为直角坐标方程为:

(II)方法1: ,即

的中点为,有,所以,由

方法2:设,则,∵,∴,由.

方法3: 设,则由的中点得, ,

,∴,知,∴,由.

方法4:依题意设直线,与联立得,即,由,因为 ,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从吉安市某校高一的1000名学生随机抽取50名分析期中考试数学成绩,被抽取学生成绩全部介于95分和135分之间,将抽取的成绩分成八组:第一组[95,100],第二组[100,105],…,第八组[130,135],如图是按上述分组得到的频率分布直方图的一部分,已知前三组的人数成等差数列,第六组的人数为4人,第一组的人数是第七组、第八组人数之和.

(1)在图上补全频率分布直方图,并估计该校1000名学生中成绩在120分以上(含120分)的人数;
(2)若从成绩属于第六组,第八组的所有学生中随机抽取两名学生,记他们的成绩分别为x,y,事件G=||x﹣y|≤5|,求P(G).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,为提高学生对读书的重视,让更多的人畅游于书海中,从而收获更多的知识,某高中的校学生会开展了主题为让阅读成为习惯,让思考伴随人生的实践活动,校学生会实践部的同学随即抽查了学校的40名高一学生,通过调查它们是喜爱读纸质书还是喜爱读电子书,来了解在校高一学生的读书习惯,得到如表列联表:

喜欢读纸质书

不喜欢读纸质书

合计

16

4

20

8

12

20

合计

24

16

40

(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?

(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).

参考公式:K2=,其中n=a+b+c+d.

下列的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心为M(﹣1,2),直线y=x+4被圆M截得的弦长为 ,点P在直线l:y=x﹣1上.
(1)求圆M的标准方程;
(2)设点Q在圆M上,且满足 =4 ,求点P的坐标;
(3)设半径为5的圆N与圆M相离,过点P分别作圆M与圆N的切线,切点分别为A,B,若对任意的点P,都有PA=PB成立,求圆心N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系已知椭圆的左焦点为离心率为过点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)设点分别是椭圆的左、右顶点若过点的直线与椭圆相交于不同两点

求证:

面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若2sinA+sinB= sinC,则角A的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范围.

查看答案和解析>>

同步练习册答案