精英家教网 > 高中数学 > 题目详情
11.设f(x)是定义在R上的函数,其函数为f′(x),若f(x)+f′(x)<1,f(0)=2015,则不等式exf(x)-ex>2014(其中e为自然对数的底数)的解集为(  )
A.(2014,+∞)B.(-∞,0)∪(2014,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)

分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值即可求解.

解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)<1,
∴f(x)+f′(x)-1<0,
∴g′(x)<0,
∴y=g(x)在定义域上单调递减,
∵exf(x)-ex>2014,
∴g(x)>2014,
又∵g(0)=e0f(0)-e0=2015-1=2014,
∴g(x)>g(0),
∴x<0.
∴不等式exf(x)-ex>2014的解集为(-∞,0).
故选:D.

点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设已知三条直线l1:mx-y+m=0,l2:x+my-m(m+1)=0,l3:(m+1)x-y+(m+1)=0,它们围成△ABC.
(1)求证:不论m为何值,△ABC有一个顶点为定点;
(2)当m为何值时,△ABC面积有最大值和最小值,并求此最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)是定义在(-∞,+∞)上的偶函数,且当x≥0时,f(x)=x3+1,则当x<0时,f(x)=-x3+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|x2+px+2=0},N={x|x2-x-q=0}且M∩N={2},则p,q的值为(  )
A.p=-3,q=-2B.p=-3,q=2C.p=3,q=-2D.p=3,q=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知全集U=R,A={x|-3≤x<3},B={x|x≤-1}.
求:(1)A∩B;(2)∁UA;(3)(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,a1>0,5a5=9a9,则当数列{an}的前n项和Sn取最大值时n的值等于(  )
A.12B.13C.14D.13或14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是等比数列,Sn是前n项和,且S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.
(1)求数列{an}的通项公式;
(2)求前8项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是偶函数,当x>0时,f(x)为增函数,设a=f(-$\frac{5}{2}$),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)为R上的奇函数,且x>0时f(x)=-x2+(a+2)x-a2+5(其中a为实常数).
(1)求f(0)的值;
(2)求x<0时f(x)的解析式;
(3)若f(x)在区间(0,2]上的最大值为2,求a的值.

查看答案和解析>>

同步练习册答案