A. | (2014,+∞) | B. | (-∞,0)∪(2014,+∞) | C. | (-∞,0)∪(0,+∞) | D. | (-∞,0) |
分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值即可求解.
解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)<1,
∴f(x)+f′(x)-1<0,
∴g′(x)<0,
∴y=g(x)在定义域上单调递减,
∵exf(x)-ex>2014,
∴g(x)>2014,
又∵g(0)=e0f(0)-e0=2015-1=2014,
∴g(x)>g(0),
∴x<0.
∴不等式exf(x)-ex>2014的解集为(-∞,0).
故选:D.
点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p=-3,q=-2 | B. | p=-3,q=2 | C. | p=3,q=-2 | D. | p=3,q=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 12 | B. | 13 | C. | 14 | D. | 13或14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | b<a<c | B. | c<b<a | C. | b<c<a | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com