精英家教网 > 高中数学 > 题目详情
16.下列说法及计算不正确的是①③.
①6名学生争夺3项冠军,冠军的获得情况共有36种.
②在某12人的兴趣小组中,有女生5人,现要从中任意选取6人参加2012年数学奥赛,用x表示这6人中女生人数,则P(X=3)=$\frac{C_5^3C_7^3}{{C_{12}^6}}$.
③|r|≤1,并且|r|越接近1,线性相关程度越弱;|r|越接近0,线性相关程度越强.
④${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{c}$f(x)dx+${∫}_{c}^{b}$f(x)dx(a<c<b)

分析 ①由题意可得每项冠军获得情况都有6中可能,由分步乘法原理求得冠军的获得情况后加以判断;
②直接利用古典概型概率计算公式求出P(X=3)后判断;
③利用相关系数和相关程度的关系判断;
④由积分公式说明正确.

解答 解:①6名学生争夺3项冠军,每项冠军获得情况都有6中可能,由分步乘法原理可得共有63种,①错误.
②在某12人的兴趣小组中,有女生5人,现要从中任意选取6人参加2012年数学奥赛,用x表示这6人中女生人数,则P(X=3)=$\frac{C_5^3C_7^3}{{C_{12}^6}}$,正确.
③|r|≤1,并且|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱,③错误.
④由${∫}_{a}^{b}f(x)dx$=${∫}_{a}^{c}$f(x)dx+${∫}_{c}^{b}$f(x)dx(a<c<b),可知④正确.
∴不正确的算法是①③.
故答案为:①③.

点评 本题考查命题的真假判断与应用,考查排列与组合知识,考查古典概型概率计算公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2asin(2x+$\frac{π}{6}$)+a+b(a>0),当x∈[0,$\frac{π}{2}$]时,f(x)最大值是1,最小值是-3.
(1)求a,b的值
(2)求f(x)的单调减区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α的终边所在的直线过点P(4,-3),则cosα的值为(  )
A.4B.-3C.±$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆${O_2}:{(x-3)^2}+{(y+3)^2}=4$关于直线l:ax+4y-6=0对称,则直线l的斜率是(  )
A.6B.$\frac{2}{3}$C.$-\frac{3}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=ln(x2-x)的定义域是(  )
A.(-∞,0]∪[1,+∞)B.(0,1)C.[0,1]D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在二项式${({\sqrt{x}-\frac{3}{x}})^n}$的展开式中,各项系数之和为A,各项二项式系数之和为B,且A+B=128.则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,预测该地区2015年农村居民家庭人均纯收入.
附:用最小二乘法求线性回归方程系数公式 $\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列{an}中,a2a3a6a9a10=32,则$\frac{({a}_{9})^{2}}{{a}_{12}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.己知m、a1、a2、n和m、b1、b2、b3、n分别是两个等差数列(m≠n),则$\frac{{a}_{2}-{a}_{1}}{{b}_{2}-{b}_{1}}$的值为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案