【题目】某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分,每项评分最低分0分,最高分100分,每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如下:
请根据图中所提供的信息,完成下列问题:
(I)若从交通得分前6名的景点中任取2个,求其安全得分都大于90分的概率;
(II)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为,求随机变量的分布列和数学期望;
(III)记该市26个景点的交通平均得分为安全平均得分为,写出和的大小关系?(只写出结果)
【答案】(I);(II)分布列见解析,期望为;(III)
【解析】
(I)根据古典概型概率计算公式,计算出所求概率.
(II)利用超几何分布的知识求出分布列和数学期望.
(III)根据两种得分的数据离散程度进行判断.
(I)由图可知,交通得分前名的景点中,安全得分大于分的景点有个,所以从交通得分前名的景点中任取个,求其安全得分都大于分的概率为.
(II)结合两个图可知,景点总分排名前的的景点中,安全得分不大于分的景点有个,所以的可能取值为.
.
所以的分布列为:
所以.
(III)由图可知,个景点中,交通得分全部在分以上,主要集中在分附近,安全得分主要集中在分附近,且分一下的景点接近一半,故 .
科目:高中数学 来源: 题型:
【题目】设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)e-x,求函数g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱,EF//平面ABCD,EF与平面ABCD的距离为2,该刍甍的体积为( )
A.6B.C.D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,有下列四个命题:
①函数是奇函数;
②函数在是单调函数;
③当时,函数恒成立;
④当时,函数有一个零点,
其中正确的是____________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.
根据行业质量标准规定,该核心部件尺寸x满足:|x﹣12|≤1为一级品,1<|x﹣12|≤2为二级品,|x﹣12|>2为三级品.
(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[12,15]的产品,记ξ为这2件产品中尺寸x∈[14,15]的产品个数,求ξ的分布列和数学期望;
(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50元.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;
(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是,,.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com