精英家教网 > 高中数学 > 题目详情
如果命题“an=f(n),n∈N*”,当n=2时成立,且若n=k,k≥2时命题成立,则当n=k+2时,命题也成立.那么下列结论正确的是(  )
分析:利用假设,分k是奇数,k是偶数进行证明,即可得结论.
解答:解:若k是奇数,则由条件可知,命题对所以大于1的奇数成立,若k是偶数,
则由条件可知,命题对所以大于1的偶数成立,从命题an=f(n)对所有大于1的自然数n都成立,
故选D.
点评:本题主要考查数学归纳法的运用,关键是正确利用归纳假设.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如果命题“an=f(n),n∈N*”,当n=2时成立,且若n=k,k≥2时命题成立,则当n=k+2时,命题也成立.那么下列结论正确的是


  1. A.
    命题an=f(n)对所有偶数n都成立
  2. B.
    命题an=f(n)对所有正偶数n都成立
  3. C.
    命题an=f(n)对所有自然数n都成立
  4. D.
    命题an=f(n)对所有大于1的自然数n都成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果命题“an=f(n),n∈N*”,当n=2时成立,且若n=k,k≥2时命题成立,则当n=k+2时,命题也成立.那么下列结论正确的是(  )
A.命题an=f(n)对所有偶数n都成立
B.命题an=f(n)对所有正偶数n都成立
C.命题an=f(n)对所有自然数n都成立
D.命题an=f(n)对所有大于1的自然数n都成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果命题“an=f(n),n∈N*”,当n=2时成立,且若n=k,k≥2时命题成立,则当n=k+2时,命题也成立.那么下列结论正确的是(  )
A.命题an=f(n)对所有偶数n都成立
B.命题an=f(n)对所有正偶数n都成立
C.命题an=f(n)对所有自然数n都成立
D.命题an=f(n)对所有大于1的自然数n都成立

查看答案和解析>>

同步练习册答案