精英家教网 > 高中数学 > 题目详情

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

【答案】C

【解析】

至少有2位关注此次大阅兵的对立事件为恰有2位不关注此次大阅兵,根据对立事件的概率公式计算概率.

解:从这10位外国人中任意选取3位做一次采访,其结果为个,

恰有2位不关注此次大阅兵有个,

则至少有2位关注大阅兵的概率.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数,有下述四个结论:

①若内单调递增,则.

②若内单调递减,则.

③若内有且仅有一个极大值点,则.

④若内有且仅有一个极小值点,则.

其中所有正确结论的序号是(

A.①③B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数ab,再统计出ab1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,点的极坐标,直线经过点,且倾斜角为.

1)写出曲线的直角坐标方程和直线的标准参数方程;

2)直线与曲线交于两点,直线的参数方程为t为参数),直线与曲线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx3,gx)=alnx2xaR.

1)讨论gx)的单调性;

2)是否存在实数a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市有东西南北四个进入城区主干道的人口,在早高峰时间段,时常发生交通拥堵,交警部门记录了11月份30天内的拥堵情况(如下表所示,其中●表示拥堵,○表示通畅).假设每个入口是否发生拥堵相互独立,将各入口在这30天内拥堵的频率代替各入口每天拥堵的概率.

(1)分别求该城市一天中早高峰时间段这四个主干道的入口发生拥堵的概率.

(2)各入口一旦出现拥堵就需要交通协管员来疏通,聘请交通协管员有以下两种方案可供选择.方案一:四个主干道入口在早高峰时间段每天各聘请一位交通协管员,聘请每位交通协管员的日费用为m(,且).方案二:在早高峰时间段若某主干道入口发生拥堵,交警部门则需临时调派两位交通协管员协助疏通交通,调派后当日需给每位交通协管员的费用为200.以四个主干道入口聘请交通协管员的日总费用的数学期望为依据,你认为在这两个方案中应该如何选择?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差数列,△ABC的面积为2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为正方形,为正三角形,的中点,过的平面平行于平面,且平面与平面的交线为,与平面的交线为

1)在图中作出四边形(不必说出作法和理由);

2)若,四棱锥的体积为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的单调区间;

)若都属于区间,求实数的取值范围.

查看答案和解析>>

同步练习册答案