精英家教网 > 高中数学 > 题目详情

【题目】为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车.已知每日来回趟数y是每次拖挂车厢节数x的一次函数,如果该列火车每次拖4节车厢,每日能来回16趟;如果每次拖6节车厢,则每日能来回10趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客110人.

(1)求出y关于x的函数;

(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?

【答案】(1)y=﹣3x+28.(2)每次拖挂5节车厢才能使每日营运人数最多,最多的营运人数为14300.

【解析】试题分析:(1)设每日来回趟数与每次拖挂车厢节数的一次函数为.则由已知可得,该函数过点和点,代入后解得,所以关于的函数为;(2)由题意可知每日营运人数 ,因为对称轴,所以.

试题解析:(1)设

2)设

对称轴

答:每次拖挂节车厢才能使每日营运人数最多,最多的营运人数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函数y=f(x)在区间(1,3)上单调,求a的取值范围;
(2)若函数g(x)=f(x)﹣x在(0, )上无零点,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知和定点,由外一点引切线,切点为,且满足.(1)求实数间满足的等量关系;

(2)求线段长的最小值;

(3)若以为圆心所作的有公共点,试求半径取最小值时的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函数.

1)求实数k的值;

2)求函数gx)的定义域;

(3)若函数fx)与gx)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )是偶函数.

(1)求的值;

(2)设函数,其中.若函数的图象有且只有一个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了预防甲型流感,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时室内每立方米空气中的含药量与时间成正比例,药物燃烧完后满足,如图所示,现测得药物8燃毕,此时室内空气中每立方米的含药量为6,请按题中所供给的信息,解答下列各题.

(1)求关于的函数解析式;

(2)研究表明,当空气中每立方米的含药量不低于且持续时间不低于时才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若规定E={a1 , a2 , …,a10}的子集{at1 , at2 , …,ak}为E的第k个子集,其中 ,则E的第211个子集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数h(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0 , h(x0)),记函数h(x)的导函数为g(x),则有g′(x0)=0,设函数f(x)=x3﹣3x2+2,则f( )+f( )+…+f( )+f( )=

查看答案和解析>>

同步练习册答案