分析 (1)设∠BAE=α,则∠C=150°-3α,利用正弦定理可得角C的大小;
(2)利用正弦定理可得BE,CF,即可求线段EF的长.
解答 解:(1)设∠BAE=α,则∠C=150°-3α,
∴由正弦定理可得$\frac{\frac{3}{2}\sqrt{2}}{\frac{1}{2}}$=$\frac{3}{sin3α}$=$\frac{AB}{sin(150°-3α)}$,
∴sin3α=$\frac{\sqrt{2}}{2}$,
∵∠BAC$>\frac{π}{2}$,
∴3α=135°,
∴C=150°-3α=15°;
(2)在△ABC中,$\frac{AB}{sin15°}$=$\frac{\frac{3}{2}\sqrt{2}}{\frac{1}{2}}$,∴AB=$\frac{3\sqrt{3}-3}{2}$,
△ABE中,$\frac{BE}{sin45°}$=$\frac{AB}{sin105°}$,∴BE=6-3$\sqrt{3}$.
△AFC中,$\frac{\frac{3}{2}\sqrt{2}}{sin120°}=\frac{CF}{sin45°}$,∴CF=$\sqrt{3}$,
∴EF=3-6+3$\sqrt{3}$-$\sqrt{3}$=2$\sqrt{3}$-3.
点评 本题考查正弦定理的运用,考查学生的计算能力,正确运用正弦定理是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-3,1,5) | B. | (-3,-1,5) | C. | (3,-1,-5) | D. | (-3,1,-5) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com