A. | $\frac{1+\sqrt{5}}{2}$ | B. | $\frac{1+\sqrt{3}}{2}$ | C. | $\frac{4\sqrt{2}-2}{7}$ | D. | $\frac{4\sqrt{2}+2}{7}$ |
分析 由题设知|EF|=b,|PF|=2b,|PF′|=2a,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,
据此可求出P点的横坐标,后在Rt△PDF中根据勾股定理建立等式,由此能求出双曲线的离心率.
解答 解:取PF的中点E,则OE⊥PF,
斜率为$\frac{a}{b}$且经过点F的直线l的方程为y=$\frac{a}{b}$(x+c),
即ax-by+ac=0,
∴|OE|=$\frac{ac}{\sqrt{{a}^{2}+{b}^{2}}}$=a,
∴|EF|=b,
∴|PF|=2b,
又∵O为FF′的中点,
∴PF′∥EO,
∴|PF′|=2a,
∵抛物线方程为y2=4cx,
∴抛物线的焦点坐标为(c,0),
即抛物线和双曲线右支焦点相同,
过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,
∴PD=PF′=2a,
∴P点横坐标为2a-c,设P(x,y),
在Rt△PDF中,PD2+DF2=PF2,即4a2+y2=4b2,4a2+4c(2a-c)=4(c2-b2),
解得e=$\frac{1+\sqrt{5}}{2}$
故选:A.
点评 本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,同时考查抛物线的定义及性质,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{\sqrt{30}}{5}$,$\frac{\sqrt{6}}{2}$] | B. | (1,$\frac{\sqrt{6}}{2}$] | C. | (1,$\frac{\sqrt{30}}{5}$] | D. | [$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com