精英家教网 > 高中数学 > 题目详情

【题目】某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门(如图).设计要求彩门的面积为(单位:),高为(单位:)(为常数).彩门的下底固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为,不锈钢支架的长度和记为

1)请将表示成关于的函数

2)问当为何值最小,并求最小值.

【答案】(1)l表示成关于的函数为 ();

(2)当时,l有最小值为.

【解析】试题分析:(1)求出上底,即可将表示成关于的函数
(2)求导数,取得函数的单调性,即可解决当为何值时最小,并求最小值.

试题解析:(1)过于点,则), ,设

因为S=,则

();

(2)

 令span>,得.

极小值

 所以, .

答:(1)l表示成关于的函数为 ();

(2)当时,l有最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一片森林原面积为.计划从某年开始,每年砍伐一些树林,且每年砍伐面积的百分比相等.并计划砍伐到原面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的.已知到今年为止,森林剩余面积为原面积的

(1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

(3)为保护生态环境,今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

时,求函数的值域;

在区间上为增函数时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中BC的中点为MGH的中点为N.

(1)请将字母FGH标记在正方体相应的顶点处(不需说明理由).

(2)判断平面BEG与平面ACH的位置关系并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.

1)把C1的参数方程化为极坐标方程;

2)求C1C2交点的极坐标(.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为正整数,数列满足,设数列满足.

(1)求证:数列为等比数列;

(2)若数列是等差数列,求实数的值;

(3)若数列是等差数列,前项和为,对任意的,均存在,使得成立,求满足条件的所有整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求的最大值;

(Ⅱ)若对恒成立,求的取值范围;

(Ⅲ)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列给出的输入语句、输出语句和赋值语句:

1输出语句INPUT ,b,c

2输入语句INPUT =3

3赋值语句3=A

4赋值语句A=B=C

则其中正确的个数是( )

A0B1C2D3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明:<0.

查看答案和解析>>

同步练习册答案