精英家教网 > 高中数学 > 题目详情
精英家教网长方体ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1∥平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D.
分析:(Ⅰ)欲证B1D1∥平面BC1D,根据直线与平面平行的判定定理可知只需证B1D1与平面BC1D内一直线平行,而B1D1∥BD,且B1D1在平面BC1D外,满足定理所需条件;
(Ⅱ)欲证A1O⊥平面BC1D,根据直线与平面垂直的判定定理可知只需证A1O与平面BC1D内两相交直线垂直,连接OC1
,根据线面垂直的性质可知A1O⊥BD,根据勾股定理可知A1O⊥OC1,满足定理所需条件.
解答:精英家教网(Ⅰ)证明:依题意:B1D1∥BD,且B1D1在平面BC1D外.(2分)
∴B1D1∥平面BC1D(4分)
(Ⅱ)证明:连接OC1
∵BD⊥AC,AA1⊥BD
∴BD⊥平面ACC1A1(5分)
又∵O在AC上,∴A1O在平面ACC1A1
∴A1O⊥BD(6分)
∵AB=BC=2∴AC=A1C1=2
2

OA=
2

∴Rt△AA1O中,A1O=
AA12+OA2
=2
(7分)
同理:OC1=2
∵△A1OC1中,A1O2+OC12=A1C12
∴A1O⊥OC1(8分)
∴A1O⊥平面BC1D
点评:本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(1)求棱A1A的长;
(2)求点D到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 则三棱锥A1-ABC的体积为(  )
A、10B、20C、30D、35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCD-A1B1C1D1,它是由一个长方体ABCD-A'B'C'D'切割而成,这个长方体的高为b,底面是边长为a的正方形,其中顶点A1,B1,C1,D1均为原长方体上底面A'B'C'D'各边的中点.
(1)若多面体面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(2)若a=4,b=2,求该多面体的体积;
(3)当a,b满足什么条件时AD1⊥DB1,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(1)求证:A1E⊥平面ADE;
(2)求三棱锥A1-ADE的体积.

查看答案和解析>>

同步练习册答案