精英家教网 > 高中数学 > 题目详情
8.△ABC中,角A,B,C成等差数列,AC=3-$\sqrt{3}$,AB=$\sqrt{6}$-$\sqrt{2}$,△ABC的面积为$\frac{3-\sqrt{3}}{2}$.

分析 由题意可得B=60°,结合题意和余弦定理可得a值,代入面积公式S=$\frac{1}{2}$acsinB,计算可得.

解答 解:由角A,B,C成等差数列可得2B=A+C,
由三角形的内角和可得A+B+C=180°,∴B=60°,
由AC=b=3-$\sqrt{3}$,AB=c=$\sqrt{6}$-$\sqrt{2}$可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
代入数据整理得a2-($\sqrt{6}$-$\sqrt{2}$)c+2$\sqrt{3}$-4=0,
解得a=$\sqrt{2}$,∴S=$\frac{1}{2}$acsinB=$\frac{3-\sqrt{3}}{2}$,
故答案为:$\frac{3-\sqrt{3}}{2}$.

点评 本题考查解三角形,涉及正余弦定理和三角形的面积公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.等差数列6,4,2…的第n+1项是(  )
A.6+2nB.6-2nC.2n+4D.8-2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点为(-$\sqrt{5}$,0),a=2b,则双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{2}$-y2=1B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{2}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若点P(x,y)在圆(x-2)2+y2=3上.
(1)$\sqrt{{x}^{2}+{y}^{2}}$的最大值和最小值;
(2)求$\frac{y}{x}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tanα=$\sqrt{2}$,则2sin2α-sinαcosα+cos2α=$\frac{5-\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{5}}}{3}$,定点M(2,0),椭圆短轴的端点是B1,B2,且MB1⊥MB2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使△APB内切圆圆心的纵坐标为定值?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C与双曲线$\frac{{x}^{2}}{2}$-y2=1有相同的焦点,且椭圆C的离心率为e=$\frac{\sqrt{2}}{2}$,直线l:y=$\frac{1}{2}$(x-3)与椭圆C交于不同的两点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C的右焦点为F,求△PFQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),两定直线l1x=-$\frac{{a}^{2}}{c}$,l2:x=$\frac{{a}^{2}}{c}$,直线l1恰为抛物线E:y2=16x的准线,直线l:x+2y-4=0与椭圆相切.
(1)求椭圆C的方程;
(2)如果椭圆C的左顶点为A,右焦点为F,过F的直线与椭圆C交于P,Q两点,直线AP,AQ与直线l2分别交于N,M两点,求证:四边形MNPQ的对角线的交点是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2,当x=-2时的值.

查看答案和解析>>

同步练习册答案