分析 由题意可得B=60°,结合题意和余弦定理可得a值,代入面积公式S=$\frac{1}{2}$acsinB,计算可得.
解答 解:由角A,B,C成等差数列可得2B=A+C,
由三角形的内角和可得A+B+C=180°,∴B=60°,
由AC=b=3-$\sqrt{3}$,AB=c=$\sqrt{6}$-$\sqrt{2}$可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
代入数据整理得a2-($\sqrt{6}$-$\sqrt{2}$)c+2$\sqrt{3}$-4=0,
解得a=$\sqrt{2}$,∴S=$\frac{1}{2}$acsinB=$\frac{3-\sqrt{3}}{2}$,
故答案为:$\frac{3-\sqrt{3}}{2}$.
点评 本题考查解三角形,涉及正余弦定理和三角形的面积公式,属基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{2}$-y2=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | x2-$\frac{{y}^{2}}{2}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com