精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,.

(Ⅰ)证明:
(Ⅱ)若求四棱锥的体积
(Ⅰ)见解析;(Ⅱ).

试题分析:(Ⅰ)要证明线面平行只要证明线和平面内的一条直线平行或直线所在平面和此平面平行,此题我们用第一种证明,我们设,连接EF,证明从而;(Ⅱ)先计算出四边形的面积,四棱锥的高为,由体积公式可得.
试题解析:(Ⅰ)设,连接EF,


         2分
                             3分
平分中点,中点,
的中位线.                                  4分

.                                        6分
(Ⅱ)底面四边形的面积记为;
.        9分

.                  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,棱底面,,的中点.

(1)证明平面
(2)证明平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,连结A1B与∠A1BC=60°.

(Ⅰ)求证:AC⊥A1B;
(Ⅱ)设D是BB1的中点,求三棱锥D-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在四边形A-BCD中,ADBCADAB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A­BCD,则在三棱锥ABCD中,下列命题正确的是(  ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
①;②与异面直线、都垂直;③当二面角是直二面角时,=;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一个平面与正方体的12条棱的夹角均为,那么        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,边长为的等边三角形的中线与中位线交于点,已知平面)是旋转过程中的一个图形,有下列命题:

①平面平面
//平面
③三棱锥的体积最大值为
④动点在平面上的射影在线段上;
⑤二面角大小的范围是.
其中正确的命题是         (写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题“直线与平面有公共点”是真命题,那么下列命题:
①直线上的点都在平面内;
②直线上有些点不在平面内;
③平面内任意一条直线都不与直线平行.其中真命题的个数是( )
A.0 B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x、y、z是空间中不同的直线或平面,对下列四种情形:
①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面,其中使“x⊥z且y⊥z⇒x∥y”为真命题的是  (     )
A.③④B.①③
C.②③D.①②

查看答案和解析>>

同步练习册答案