精英家教网 > 高中数学 > 题目详情
已知
a
=(sinθ,1)
b
=(1,cosθ)
c
=(0,3)
-
π
2
<θ<
π
2

(1)若(4
a
-
c
)∥
b
,求θ;
(2)求|
a
+
b
|
的取值范围.
分析:(1)利用向量的线性运算和正弦函数的单调性即可求出;
(2)根据向量的模的计算公式及三角函数的运算和正弦函数的单调性即可求出.
解答:解:(1)∵4
a
-
c
=4(sinθ,1)-(0,3)=(4sinθ,1),(4
a
-
c
)∥
b

∴4sinθcosθ-1=0,∴sin2θ=
1
2

-
π
2
<θ<
π
2
,∴-π<2θ<π.
2θ=
π
6
6
,即θ=
π
12
12

(2)∵
a
+
b
=(sinθ+1,cosθ+1),
|
a
+
b
|
=
(sinθ+1)2+(cosθ+1)2
=
3+2(sinθ+cosθ)
=
3+2
2
sin(θ+
π
4
)

-
π
2
<θ<
π
2
,∴-
π
4
<θ+
π
4
4
,∴-
2
2
<sin(θ+
π
4
)≤1

1<3+2
2
sin(θ+
π
4
)≤3+2
2

1<
3+2
2
sin(θ+
π
4
)
2
+1

|
a
+
b
|∈
(1,
2
+1]
点评:熟练掌握向量的线性运算、模的计算公式及三角函数的有关运算是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知a=sin(-1),b=cos(-1),c=tan(-1),则a、b、c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)若函数f(x)=lg(x+
x2+a
),为奇函数,则a=1;
(2)函数f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),则
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,则△ABC是钝角三角形
( 5)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),则直线AP一定通过△ABC的内心.
以上命题为真命题的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sin(
π
4
+2α),
6
6
),
b
=(sin(
π
4
-2α),-
6
6
)
α∈(
π
4
π
2
)
,且
a
b
,求
2
sin2α+2cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinθ,cosθ)
b
=(
3
,1)

(1)若
a
b
,求tanθ的值;
(2)若f(θ)=|
a
+
b
|
,△ABC的三条边分别为f(-
3
)、f(-
π
6
)、f(
π
3
),求△ABC的面积.

查看答案和解析>>

同步练习册答案