精英家教网 > 高中数学 > 题目详情
等差数列{an}中,Sn是其前n项和,
S2010
2010
-
S2008
2008
=2,
lim
n→∞
Sn
n2
的值为
 
分析:利用等差数列的前n项和公式将已知条件化简,可得d=2,求出
sn
n2
的表达式,再利用数列极限的运算法则进行解答.
解答:解:∵{an}为等差数列,设首项为a1,公差为d,
∴sn=na1+
n(n-1)
2
d,
sn
n
=a1+
n-1
2
d,
S2010
2010
-
S2008
2008
=(a1+
2010-1
2
×d)-(a1+
2008-1
2
×d)=d=2,
∴sn=n2+(a1-1)n,
lim
n→∞
Sn
n2
=
lim
n→∞
(1+
a1-1
n
)
=1,
故答案为1.
点评:本题是数列的前n项和公式和数列极限的简单综合问题,熟练掌握公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案