精英家教网 > 高中数学 > 题目详情

如图,在直角梯形ABCD中,AD⊥AB,BC⊥AB,AD=3,AB=4,BC=数学公式,点E在线段AB的延长线上.曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)试问:过点C能否作一条直线l与曲线段DE相交于两点M、N,使得线段MN以C为中点?若能,则求直线l的方程;
若不能,则说明理由.

解:(1)以直线AB为x轴,线段AB的中点为原点,
建立如图所示的平面直角坐标系,
.…(1分)
∵AD+BD=3+5=8>AB,
∴依题意,曲线段DE是以A、B为左、右焦点,
长轴长为8的椭圆的一部分. (3分)
故曲线段DE的方程为. (6分)
(2)设这样的直线l存在,
由直线x=2与曲线段DE只有一个交点(0,3),
知直线l存在斜率,设直线l的方程为

将其代入
①(9分)
设M(x1,y1),N(x2,y2),
则由,知x1+x2=4,

解得.(12分)
时,方程①化为:x2-4x=0,
解得x1=0,x2=4.
,适合条件.
故直线l存在,其方程为
.(14分)
分析:(1)以直线AB为x轴,线段AB的中点为原点,建立平面直角坐标系,由AD+BD=3+5=8>AB,知曲线段DE是以A、B为左、右焦点,长轴长为8的椭圆的一部分.由此能求出曲线段DE的方程.
(2)设这样的直线l存在,由直线x=2与曲线段DE只有一个交点(0,3),设直线l的方程为 ,将其代入.由此能求出直线l的方程.
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,且DM⊥MC,试求出四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.点E、F分别是PC、BD的中点,现将△PDC沿CD折起,使PD⊥平面ABCD,
(1)求证:EF∥平面PAD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在BCD内运动(含边界),设
AP
AD
AB
,则α+β的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案