精英家教网 > 高中数学 > 题目详情
1.如图给定的是纸盒的外表面,下列哪一项能由它折叠而成(  )
A.B.C.D.

分析 根据已知中纸盒的外表面,分析纸盒的几何特征,利用排除法,可得答案.

解答 解:由已知中纸盒展开图,可得:
该几何体是一个棱台,
从上住下看,四个侧面按逆时间排列应为:①空白梯形,②有中位线的梯形,③有两条平行于底面的三等分线的梯形,④有侧高的梯形,
故排除A,B,
结合上底中位线的方向,可知②④侧面与上底的中位线平行,可排除D,
故选:C

点评 本题考查的知识点是空间想象能力,几何体的展开图,还原几何体的并分析出几何特征,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.顶点在原点且以双曲线$\frac{x^2}{3}-{y^2}=1$的左准线为准线的抛物线方程是y2=6x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,A1,A2,A3,…An分别是抛物线y=x2上的点,A1B1垂直与x轴,A1C1垂直于y轴,线段B1C1交抛物线与A2,再作A2B2⊥x轴,A2C2⊥y轴,线段B2C2交抛物线于A3,这样下去,分别可以得到A4,A5,…,An,其中A1的坐标为(1,1),则S${\;}_{矩形{A}_{n}{B}_{n}O{C}_{n}}$=($\frac{\sqrt{5}-1}{2}$)3n-3..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)如果两个角有相同的始边和终边,这两个角相等吗?为什么?
(2)钝角是第几象限的角?第二象限的角都是钝角吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在正六棱柱ABCDEF-A1B1C1D1E1F1中,用$\overrightarrow{AB}$,$\overrightarrow{AF}$,$\overrightarrow{A{A}_{1}}$表示向量$\overrightarrow{A{D}_{1}}$,其结果为$\overrightarrow{A{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设g(x)=$\left\{\begin{array}{l}{{e}^{x}}&{x≤0}\\{lnx}&{x>0}\end{array}\right.$,则g(e-1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法:
①如果非零向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相同或相反,那么$\overrightarrow{a}$+$\overrightarrow{b}$的方向必与$\overrightarrow{a}$,$\overrightarrow{b}$之一的方向相同;
②△ABC中,必有$\overrightarrow{AB}$$+\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$;
③若$\overrightarrow{AB}$+$\overrightarrow{BC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,则A,B,C为一个三角形的三个顶点;
④若$\overrightarrow{a}$,$\overrightarrow{b}$均为非零向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定相等.
其中正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知y=asinx+b(a<0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,则a=-1,b=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点.
(1)求AD1与DB所成角的大小;
(2)求AE与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案