精英家教网 > 高中数学 > 题目详情

【题目】设抛物线C:与直线交于AB两点.

1)当取得最小值为时,求的值.

2)在(1)的条件下,过点作两条直线PMPN分别交抛物线CMNMN不同于点P)两点,且的平分线与轴平行,求证:直线MN的斜率为定值.

【答案】12)证明见解析,定值.

【解析】

1)先确定直线过抛物线焦点,再根据抛物线定义求,最后根据最小值求的值;

2)先确定PMPN的斜率互为相反数,再设直线PM方程,与抛物线联立解得M坐标,类似可得N点坐标,最后利用斜率公式求结果.

1)由题意知:直线过定点,该点为抛物线焦点.

联立,消去得:

,当时,

,解得

2)证明:由已知可知直线PMPN的斜率存在,且互为相反数

,直线PM的方程为.

联立,消去x整理得:.

4为方程的一个根,所以,得

同理可得

所以直线MN的斜率为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.

1)求椭圆C的方程;

2)设直线上与椭圆C交于AB两点,点,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自新型冠状病毒疫情爆发以来,人们时刻关注疫情,特别是治愈率,治愈率累计治愈人数/累计确诊人数,治愈率的高低是战役的重要数据,由于确诊和治愈人数在不断变化,那么人们就非常关心第天的治愈率,以此与之前的治愈率比较,来推断在这次战役中是否有了更加有效的手段,下面是一段计算治愈率的程序框图,请同学们选出正确的选项,分别填入①②两处,完成程序框图.

:第天新增确诊人数;:第天新增治愈人数;:第天治愈率

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

①若上是奇函数,则上也是奇函数

②若不是正弦函数,则不是周期函数

,则.”的否命题是,则.”

④若,则的充分不必要条件

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为厘米,瓶底直径为厘米,瓶口距瓶颈为厘米,瓶颈到水位线距离和水位线到瓶底距离均为厘米,现将颗石子投入瓶中,发现水位线上移厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上除AB外的一个动点,DC垂直于半圆O所在的平面,DCEBDCEB1AB4.

1)证明:平面ADE⊥平面ACD

2)当C点为半圆的中点时,求二面角DAEB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?

2)将同学乙的成绩的频率分布直方图补充完整;

3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案