【题目】已知函数.
(1)若,解不等式;
(2)若存在实数,使得不等式成立,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)由绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)先化简不等式为|3x﹣a|﹣|3x+6|≥1﹣a,再根据绝对值三角不等式得|3x﹣a|﹣|3x+6|最大值为|a+6|,最后解不等式得实数的取值范围
试题解析:解:(1)a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,
或或,
解得:﹣≤x≤;
(2)不等式f(x)≥1﹣a+2|2+x|成立,
即|3x﹣a|﹣|3x+6|≥1﹣a,
由绝对值不等式的性质可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,
即有f(x)的最大值为|a+6|,
∴或,
解得:a≥﹣.
科目:高中数学 来源: 题型:
【题目】如图为一简单组合体,其底面 ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求证:BE∥平面PDA;
(2)求四棱锥B﹣CEPD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交警随机抽取了途径某服务站的40辆小型轿车在经过某区间路段的车速(单位: ),现将其分成六组为后得到如图所示的频率分布直方图.
(1)某小型轿车途经该路段,其速度在以上的概率是多少?
(2)若对车速在两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地最近十年对某商品的需求量逐年上升,下表是部分统计数据:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(万件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量y与年份x之间的回归直线方程 = x+ ;
(2)预测该地2018年的商品需求量(结果保留整数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的斜率为k,经过点(1,﹣1),将直线向右平移3个单位,再向上平移2个单位,得到直线m,若直线m不经过第四象限,则直线l的斜率k的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度为( )
A.40m
B.20m
C.305m
D.(20 ﹣40)m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,设命题p:椭圆C: + =1的焦点在x轴上;命题q:直线l:x﹣y+m=0与圆O:x2+y2=9有公共点. 若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x﹣2y﹣1=0.
(1)求直线l的方程;
(2)求直线l关于原点O对称的直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com