精英家教网 > 高中数学 > 题目详情

【题目】已知a>1,f(x)=x2﹣ax , 当x∈(﹣1,1)时,均有f(x)< ,则实数a的取值范围是(
A.(1,2)
B.(1,3]
C.(1,
D.(1,2]

【答案】B
【解析】解:∵a>1,函数y=﹣ax是减函数, 当x∈(﹣1,1)时,函数y=x2在(﹣1,0)时单调递减,在(0,1)单调递增,
∴f(x)=x2﹣ax在x∈(﹣1,1)的值域为(﹣1,1﹣ ),即1
解得:a≤3.
∴实数a的取值范围是(1,3]
故选B.
【考点精析】本题主要考查了函数的值域的相关知识点,需要掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列的前项和为,且

1)求数列的通项公式;

2)数列中, ,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔选手参加中国谜语大会,某中学举行了一次谜语大赛活动,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数得分取正整数,满分为100分作为样本,样本容量为进行统计.按照的分组作出如下频率分布直方图.

1由如下茎叶图图中仅列出了得分在的数据提供的信息,求样本容量和频率分布直方图中的的值;

2在选取的样本中,从竞赛成绩在80分以上含80分的学生中随机抽取2名学生参加中国谜语大会,求所抽取的2名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体户计划经销A、B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A、B商品中所获得的收益分别为f(x)万元与g(x)万元、其中f(x)=a(x﹣1)+2(a>0);g(x)=6ln(x+b),(b>0)已知投资额为零时,收益为零.
(1)试求出a、b的值;
(2)如果该个体户准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收入的最大值.(精确到0.1,参考数据:ln3≈1.10).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图表示的算法中,输入三个实数a,b,c,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0).
(1)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(2)求证:当x>1时,恒有x>ln2x﹣2alnx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设α是空间中的一个平面,l,m,n是三条不同的直线,则下列命题中正确的是(
A.若mα,nα,l⊥m,l⊥n,则l⊥α
B.若mα,n⊥α,l⊥n,则l∥m
C.若l∥m,m⊥α,n⊥α,则l∥n
D.若l⊥m,l⊥n,则n∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆M:x2+y2﹣4x﹣2y+4=0
(1)若圆M的切线在x轴上的截距是y轴上的截距的2倍,求切线的方程;
(2)从圆外一点P(a,b),向该圆引切线PA,切点为A,且PA=PO,O为坐标原点,求证:以PM为直径的圆过异于M的定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为 (米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记潜水员在此次考察活动中的总用氧量为 (升).

(1)求关于的函数关系式;

(2)求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

同步练习册答案