精英家教网 > 高中数学 > 题目详情

【题目】已知长方体中,底面ABCD的长AB=4,宽BC=4,高=3,点M,N分别是BC,的中点,点P在上底面中,点Q上,若,则PQ长度的最小值是

A. B. C. D.

【答案】C

【解析】

B1C1的中点O,则△POM为直角三角形,即点P在以O为圆心,半径为2的圆在正方形A1B1C1D1内的弧上,PQ长度的最小值等于圆心到A1N的距离减去半径2,再由条件求得圆心到A1N的距离即可.

B1C1的中点O,则△POM为直角三角形,

PM,∴OP=2,

即点P在以O为圆心,半径为2的圆在正方形A1B1C1D1内的弧上,

PQ长度的最小值等于圆心到A1N的距离减去半径2,

A1NO的面积S=4×46,

又△A1NO的面积S6.∴

PQ长度的最小值是

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4/立方米收费,超出立方米的部分按10/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4/立方米, 至少定为多少?

2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与曲线分别交于两点,点的坐标为,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为F1-10)、F210),短轴的两个端点分别为B1B2

1)若△F1B1B2为等边三角形,求椭圆C的方程;

2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于PQ两点,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷,某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:

总计

认为共享产品对生活有益

认为共享产品对生活无益

总计

1)求出表格中的值,并根据表中的数据,判断能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?

2)现按照分层抽样从认为共享产品对生活无益的人员中随机抽取6人,再从6人中随机抽取2人赠送超市购物券作为答谢,求恰有1人是女性的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的零点;

2)若函数为偶函数,求实数的值;

3)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程:

已知极坐标系的极点在直角坐标系的原点,极轴与x轴非负半轴重合,直线l的参数方程为:t为参数,a∈[0,π),曲线C的极坐标方程为:p=2cosθ.

(Ⅰ)写出曲线C在直角坐标系下的标准方程;

(Ⅱ)设直线l与曲线C相交PQ两点,若|PQ|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为 (t为参数),直线的参数方程为 (为参数).设的交点为,当变化时,的轨迹为曲线

(1)写出的普通方程;

(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设的交点,求的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像相邻两条对称轴间的距离为,且,则以下命题中为假命题的是(

A.函数上是增函数.

B.函数图像关于点对称

C.函数的图象可由的图象向左平移个单位长度得到

D.函数的图象关于直线对称

查看答案和解析>>

同步练习册答案