精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】分析由双曲线的右顶点到渐近线的距离求出,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M到直线的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.

详解由双曲线方程可得,

双曲线的右顶点为,渐近线方程为,即

双曲线的右顶点到渐近线的距离等于

,解得

∴双曲线的方程为

∴双曲线的焦点为

又抛物线的焦点与双曲线的右焦点重合,

∴抛物线的方程为,焦点坐标为.如图,

设点M到直线的距离为,到直线的距离为,则

结合图形可得当三点共线时,最小,且最小值为点F到直线的距离

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最大值;

(2)当时,函数有最小值. 的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是 ( )

A. 32 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为 (为参数)。在以坐标原点为极点轴正半轴为极轴的极坐标系中,曲线

(1)写出曲线的普通方程

(2)过曲线的左焦点且倾斜角为的直线交曲线两点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )

A. 240种 B. 360种 C. 480种 D. 600种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/),年用电量为.本年度该地政府实行惠民政策,要求电力部门让利给用户,将电价下调到/)至/)之间,而用户的期望电价为/).经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为).该地区的电力成本价为/).

1)写出本年度电价下调后电力部门的收益(单位:元)关于实际电价(单位:元/)的函数解析式;(收益实际用电量(实际电价成本价))

2)设,当电价最低定为多少时,可保证电力部门的收益比上年至多减少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线经过曲线的左焦点

(1)求的值及直线的普通方程;

(2)设曲线的内接矩形的周长为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于的方程的解集中只含有一个元素,则的取值集合为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是

(1)命题“”的否定是“”;

(2)l为直线,为两个不同的平面,若,则

(3)给定命题p,q,若“为真命题”,则是假命题;

(4)“”是“”的充分不必要条件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

同步练习册答案